
IEEE TRANSACTIONS ON CYBERNETICS 1

Multi-Point Rendezvous in Multi-Robot Systems
Ramviyas Parasuraman↑, Jonghoek Kim↑, Shaocheng Luo, Byung-Cheol Min∗

Abstract—Multi-robot rendezvous control and coordination
strategies have garnered significant interest in recent years
because of their potential applications in decentralized tasks.
In this paper, we introduce a coordinate-free rendezvous con-
trol strategy to enable multiple robots to gather at different
locations (dynamic leader robots) by tracking their hierarchy
in a connected interaction graph. A key novelty in this strategy
is the gathering of robots in different groups rather than at
a single consensus point, motivated by autonomous multi-point
recharging and flocking control problems. We show that the pro-
posed rendezvous strategy guarantees convergence and maintains
connectivity while accounting for practical considerations such
as robots with limited speeds and an obstacle-rich environment.
The algorithm is distributed and handles minor faults such as a
broken immobile robot and a sudden link failure. In addition, we
propose an approach that determines the locations of rendezvous
points based on the connected interaction topology and indirectly
optimizes the total energy consumption for rendezvous in all
robots. Through extensive experiments with the Robotarium
multi-robot testbed, we verified and demonstrated the effective-
ness of our approach and its properties.

Index Terms—Networked Robots, Rendezvous Control, Multi-
Robot Coordination, Hierarchical Consensus.

I. INTRODUCTION

NETWORKED multi-robot systems can be a potential aid
in applications such as search and rescue, autonomous

exploration, sensing and communication infrastructure, etc.
Coordinating a group of robots involves repetitive tasks of
rendezvous, formation control, and flocking of the distributed
robots. Here, we focus on the rendezvous problem, in which
the distributed robots need to gather at a common location
either based on consensus or based on immediate goals [1].

Significant progress has been made in recent works address-
ing the rendezvous problem, namely by introducing distributed
control laws for realizing a consensus to gather robots at
a common location and by enabling fault tolerance in such
controllers [2], [3], [4]. Most of the studies rely on assumption
that the initial interaction topology is densely (or completely)
connected or that a global coordinate frame of reference
(e.g., a global localization system such as GPS) is available.
However, such strong assumptions are difficult to satisfy in
challenging GPS-denied large environments and in resource-
limited distributed robots.

Encouraged by the reconfigurable coordination mechanism
in [5], we show a motivating example scenario in Figure 1,

↑ R. Parasuraman and J. Kim contributed equally to this work (co-first
authors).

R. Parasuraman, S. Luo, and B.-C. Min are with SMART Lab, Department
of Computer and Information Technology, Purdue University, West Lafayette,
IN 47907, USA.

J. Kim is with Hongik University, Sejong, South Korea.
∗ Corresponding author email: minb@purdue.edu.

x1(t)
x2(t)

x1(t+k) x2(t+k)

Obstacles

N
on-traversable region

Member Mobile robots

Group leaders (Rendezvous points)

Interaction Topology

Destination positions

Obstacles

Fig. 1: An illustration of the motivation behind gathering robots in
two groups with a leader robot (in green) in each group which has the
advanced sensors and computing abilities needed to safely traverse
through a cluttered environment. The final goal at time (t+ k) is to
gather all robots in the upper part of this map, while initially (at time
t) all robots share a sparsely-connected interaction topology limited
by their sensing range.

in which we assume only a few robots have advanced capa-
bilities (namely to map and analyze the environment with 3D
LIDARs) and/or are different from other robots in terms of
coverage and visibility (e.g. Unmanned Aerial Vehicles). In
such a scenario, it would be appropriate that these advanced
robots lead the other member robots to their next target posi-
tions while avoiding obstacles in a cluttered environment. To
realize this herding behavior (inspired from [6]), all the robots
need to rendezvous at one of the group-leading robots. Note,
the interaction graph (topology) between robots is sparsely
connected, reflecting a realistic multi-robot setting.

Furthermore, we take inspirations from the autonomous
recharging [7] and coverage planning applications [8], [9]
where gathering robots in multiple groups would be of signifi-
cant interest. Therefore, we address the problem of distributed
multi-point rendezvous without global localization.

In this paper, we provide a solution to the multi-point
rendezvous problem and contribute in the following ways:

• First, we propose a distributed and coordinate-free ren-
dezvous control algorithm based on the hierarchical
tracking of a connected graph. We show the theoretical
guarantees of the algorithm such as convergence, and
link maintenance. The proposed approach is adaptive to
changes in network topology and is capable of handling
network and mobility faults.

IEEE TRANSACTIONS ON CYBERNETICS 2

• Secondly, we extend the above algorithm to perform
rendezvous at multiple points (leader robots). We also
propose to choose the leaders in each group by optimizing
the distance traveled to realize the rendezvous task.

• Finally, we demonstrate the proposed algorithm in terms
of scalability, efficiency, robustness to failures, and herd-
ing along with its dynamic nature through extensive simu-
lation experiments in the Robotarium multi-robot testbed
[10]. To validate the performance of our hierarchical
tracking algorithm, we compare it against two algorithms
available in the literature: the standard consensus in [11]
and the circumcenter-based consensus in [12].

The paper is organized as follows. In Sec. II, we analyze
the literature and show how we depart from others. Sec. III
provides some background on graph theory, assumptions, and
definitions. Specifically, the multi-point rendezvous problem
is formulated in Sec. III-C. Then in Sec. IV, we introduce
the proposed algorithm to realize a multi-point rendezvous of
robots with limited speeds. We present the experiments and
results in Sec. V and conclude the paper in Sec. VI.

II. RELATED WORK

Distributed rendezvous control laws have been well-studied
in the literature [4], [13].Ando et al. [12] proposed a con-
trol law to drive a robot towards the circumcenter of the
relative positions of all neighboring robots, thereby achieving
rendezvous in a distributed manner. In [14], a decentralized
control is proposed that preserves global connectivity by
identifying and limiting control to critical robots that risk being
disconnected from the global interaction graph. The authors of
[15] presented a distributed method for navigating a team of
robots in formation through static and dynamic obstacles by
integrating the local and global motion planners.

Rendezvous control laws can be classified depending on
the sensing modality used: 1) coordinate-based (using relative
positions) [4], [12]; or 2) bearings-only or range-only (for
example using vision sensors) [3], [16]. Although the above
methods are able to perform rendezvous efficiently, they have
high sensing costs because the robots need to keep track of the
coordinates or bearings of all their neighbors in every iteration.
Thus, in this paper, we aim to minimize the sensing load of
each robot by tracking only one of the neighboring robots
(designated as its parent robot) using a hierarchical graph-
tracking algorithm that is compatible with both coordinate-
and bearing-based local movement controllers.

Fault-tolerant rendezvous control methods are also proposed
in the literature to enable multiple robots rendezvous even
in the presence of some unidentified faulty robots [2], [17].
Note that [2] required a densely connected initial graph and
[17] assumed that the probabilities associated to robot failures
are available to realize stochastic optimal control strategies
tolerant to faults in the system. However, we do not make
such assumptions and we find that there is a need for an
efficient rendezvous algorithm that can handle both dense and
sparse graphs, which is addressed by our proposed hierarchical
tracking approach. In practice, the network topology changes
in the event of faulty robots and the proposed algorithm is
capable of handling such changes in the network graph.

Inspired by the graph-based approaches in applications
such as multi-robot recharging [7], Leader-Follower tactics
[18], and herding in groups [6], [19], [20], we propose a
unique strategy to achieve multi-point rendezvous by optimally
selecting leader robots (to reduce the combined traversal
distance of each robot while obeying certain bounds) and
assigning other mobile robots to one of the leader robots as
their rendezvous points. In addition, a leader robot can freely
maneuver to perform its own task as long as it is able to
maintain connectivity with its group members. In this way, our
control algorithm is flexible and suitable for realistic scenarios
where a robot has multiple tasks to perform. As far as we
know, we are the first to introduce multiple rendezvous points
and intentionally rendezvousing in different groups.

Additionally, literature studies [21] suggested that loco-
motion is the main contributor to energy consumption in
larger robots (the longer a robot travels, the higher the energy
consumed). In [22], [23], rendezvous control laws included
optimization of motion energy, whereas in our work we
minimize the distance traveled by all robots (similar to [24]).
Thus, the proposed optimization (grouping) strategy indirectly
optimizes energy consumed during the rendezvous task.

Multi-group rendezvous is first studied in [25], where a
theoretically sound approach based on Glowworm Swarm
Optimization (GSO) is proposed to localize and rendezvous
at multiple peaks of a multi-modal source profile. The robots
split into multiple groups by following the neighbors with
the highest luciferin value of the sensed objective function
at spatially distributed locations of the robots. However, it
fundamentally differs from our work in terms of a sensing
strategy and the goal of rendezvous. In [25], the rendezvous
happens because all the robots in the group aim to reach the
position of the local optimum of a correlated objective function
of a physical process in the field (e.g., temperature, radiation,
etc.), whereas in our work, the robots split and rendezvous at
the dynamic leader robots following the network graph with
distance (energy) optimization and herding goals without de-
pending on sensing/measurement of a global physical process.

We depart from existing related work in two important ways.
First, we introduce a novel strategy for rendezvous in multiple
groups and with dynamic rendezvous points, whereas works
in the literature focused on either a static consensus point
or rendezvous at multiple pre-determined locations. Second,
distributed controllers typically use a network graph without
a leader robot for achieving consensus (rendezvous) among
multiple robots. In such scenarios, meeting points are decided
by the algorithm and the dynamics and spatial distribution of
all robots in the network. However, in our work, we employ
a hierarchical tracking algorithm using a rooted tree (leader-
based rendezvous). Here, meeting points are decided by the
dynamics of the leader robots and are not affected by how
other non-leader agents are spread out in the space.

Moreover, the presence of dynamic moving leader robots
enables practical applications such as herding and multi-
point recharging, which is a key novelty of the proposed
solution. The advantages of the proposed solution in fault-
tolerant rendezvous and multi-point herding applications are
demonstrated in Sec. V-G and Sec. V-F, respectively.

IEEE TRANSACTIONS ON CYBERNETICS 3

III. BACKGROUND

This section reviews conventions and definitions used in
graph theory, introduces the assumptions and definitions used,
and formalizes the problem statement.

A. Graph Theory

We provide some general notations used in graph theory
[26]. Let A = (V,E,W) denote a undirected weighted graph
with vertex set V and edge set E. Each edge, say e ∈ E
is weighted by a non-negative value and is defined by the
matrix W : [wij]. Two vertices are connected if there is a
path between the two vertices, {(i, j) ∈ E |j ∈ Ni}, where
Ni represents the neighbors set for robot i. A subgraph of A
induced by a set of vertices S ⊆ V is the graph (S,ES ,WS),
where ES = {(i, j) ∈ E : i, j ∈ S}. We assume that the graph
A is symmetric (wij = wji), there is no self-loop or repetitions
of edges (wii = 0), and A is bidirectional (i ∈ Nj ↔ j ∈ Ni).

Tree: Assuming the graph is simple, non-cyclic, we
define a rooted tree T = (VT , ET ,WT) where one of the
vertices is designated as the root, and every vertex in the
tree has a hierarchical structure and establishes a parent-child
relationship with its neighboring vertices. We use the following
terms to define elements of a tree: p(u) denotes the parent
robot of u, c(u) denotes the children set of u, and R(u)
denotes the root node of the tree containing the node u. A
leaf in a tree is of the lowest hierarchy (it has no child node
c(uleaf) = ∅). A shortest-path tree rooted at a vertex v ∈ V
in the graph A is a minimum spanning tree T of A.

B. Assumptions and Definitions

We consider a set of N mobile robots in a 2D workspace
with their positions denoted as qi = [xi, yi]

T ∈ R2. We use
the Single Integrator model to describe their dynamics1.

q̇i(t) = vi(t), i ∈ V = [1,, N] (1)

where vi(t) ∈ R2 denotes the velocity control input for robot
i at time instant t. We define the following definitions and
assumptions that will be used in this work.

First, we presume that there is no global localization or
coordinate reference system available, and the robots can only
use their local sensors to detect and identify neighboring
robots. Each robot is equipped with local onboard sensors to
estimate the relative positions or bearings of the neighboring
robots. We presume that the maximum speed of any robot u
is bounded by Sm (‖q̇u‖ ≤ Sm).

Let us define SR as the maximum sensing range of the
local sensor, thus resulting in a SR-disk proximity graph [27].
Let us define SSRu as the Safe Sensing Range of a robot
u beyond which the robot movement may greatly affect the
sensing capabilities. SSRu = kSR, k ≤ 1. This limit is used
to let the robots freely maneuver as long as the neighbors are
within its SSR.

1Without losing generality, the problem can be extended to Double Inte-
grator and higher order dynamics. Also, the problem can be adapted to higher
dimensions for use in aerial and underwater vehicles.

We say that a robot detects another robot (using range or
bearing sensors such as RADAR, LIDAR, SONAR, etc.) when
the relative distance between the two robots is within SR.
We say that a robot meets or merges into another robot when
the distance between the two robots is less than ε � SR, a
small positive threshold accounting for physical proximity and
kinematic constraints. We say that two robots are neighbors
if and only if two robots detect each other as we assume
a bidirectional graph. Generally, range or bearing sensors
require line of sight with the target objects for accurate
measurements.Therefore, we assume that there is a collision-
free path (i.e., no obstacles blocking the line of sight) in
every edge. Nevertheless, this constraint can be overcome
by integrating an obstacle avoidance algorithm at the local
controller of the robot.

Let A(k) = (VA(k), EA(k),WA(k)) denote the connectivity
(proximity) graph at time step k. Each vertex in A(k) is
associated to each robot, and each edge (i, j) in A(k) implies
that two robots associated to i and j are neighbors. Each
edge in A(k) is weighted as follows. The weight of each
edge, say (i, j) ∈ EA(k), is directly proportional to the
distance between the two robots connected by the edge,
wij(k) ∝ ‖qi(k)− qj(k)‖, where qi and qj are the positions
of the robots i and j respectively.

A graph is said to be connected if there is a path (sequence
of connected edges with finite total weight) between every pair
of distinct vertices. A collection of graphs is jointly connected
if the union of the set of vertices and edges across all the
graphs remains connected. We assume that the initial graph
A(0) is a connected graph.

C. Problem Statement
We consider the problem where the robots are needed to

assemble (rendezvous) into M groups, where the number of
rendezvous points (one for each group) is fixed and prede-
termined. Let us assign M robots as the leader (root) robots
of each group. The subset representing the leader robots is
denoted as D ⊆ V . Let Dm ∈ D denote the leader robot of
the mth group (m ∈ [1, 2, ...,M]). Let U = V − D denote
the subset of robots that are not leader robots. Each robot in
U is assigned one leader robot from D. We use the notation
ui to represent an arbitrary robot i. Let R(ui) ∈ D denote the
leader robot assigned to a robot ui ∈ U .

Objective: The objective of the rendezvous algorithm is
to assemble all robots in U to their assigned leader robots in
D, i.e., when lim

t→∞
‖qui

− qR(ui)
‖ = 0, ∀ui ∈ U .

IV. MULTI-POINT RENDEZVOUS STRATEGY

First, a connectivity graph A(k) is built in a distributed
manner with each robot sharing information with its neighbor
robots (Sec. IV-A). Then, assuming that the number of groups
(M) is fixed, we assign every robot (in U) a leader robot
(from D) and decompose A(k) into M shortest-path trees
using the method proposed in Sec. IV-B. The rendezvous
control algorithm described in Sec. IV-C is applied to each
tree separately (and simultaneously). Finally, we also propose
a method to optionally choose the best leader robots from a
pool of leader robot candidates (Sec. IV-D).

IEEE TRANSACTIONS ON CYBERNETICS 4

Algorithm 1: Distributed Algorithm for Building a Global
Connectivity Graph A

for every robot ui ∈ V do
Init Li,−1 ← ∅ and Li,0 ← Ni (local neighbor lists);
c = 0;
repeat

Step 1. Get the unique changes in the local neighbor
list Li as L̄i,c = Li,c − Li,c−1;

Step 2. Send L̄i,c to all uj ∈ Ni;
Step 3. Receive L̄j,c from all uj ∈ Ni;
Step 4. Li,c+1 = Li,c + L̄j,c for all uj ∈ Ni;
c = c+ 1;

until Li converges (to global list L);
Build the global graph A from the converged list Li;

A. Building the Connectivity Graph in a Distributed Manner
To initiate our rendezvous strategy in a distributed fashion,

every robot uses its local sensors to sense neighboring robots
and creates a local neighbor set (list) Li. Each robot then
shares its list with neighbors and constructs, using a distributed
algorithm (Algorithm 1), global connectivity graph A from
the accumulated list L, which contains nodes and edges for
all robots in the network. Algorithm 1 is inspired by the
distributed consensus algorithm in [15].

To illustrate Algorithm 1, let us consider an undirected
cyclic graph with three robots a, b, and c. L of this graph
is the accumulation of the three unordered lists by individual
robots: La = {b, c, wab, wac}, Lb = {a, c, wba, wbc}, and
Lc = {a, b, wca, wcb}. The weights wij for each edge can be
obtained from robot’s range sensors, if available. Otherwise,
equal weights are presumed.

In Algorithm 1, Ni denotes the neighbor set of a robot i.
The convergence to a global list L (hence the graph A) at
every robot is obtained in a maximum of D(A) iterations (i.e.,
c ≤ D(A)), where D(A) is the diameter of a connected graph
A (the number of nodes along the shortest path from one node
to its farthest node in the graph A). Thus, Li,D(A) = L ∀i ∈ V ,
which can be proved by following an approach similar to the
Proposition 1 of [15]. Therefore, we omit the proof here.

The worst-case computation cost of the Algorithm 1 de-
pends on the graph diameter D(A) and the maximum number
of neighbors for each robot. From [28], we deduce that the
graph diameter is upper bounded by (N−1)

K , where K indicates
the K-connectedness of the graph. Therefore, the algorithm is
scalable because the number of robots in the system is signif-
icantly lower than the number of edges and can efficiently
be managed in practical applications. Also, compared to a
sparse graph (e.g., a path graph), dense graph (e.g., a complete
graph) has a lower diameter but a higher number of neighbors.
Thus, both the communication and computation workloads are
balanced in terms of density of the graph.

Note that the Algorithm 1 is called only in cases of changes
in the network topology and the graph A(k) is dynamically
updated according to the changes in the local sensor informa-
tion (for instance, a robot detected a new neighbor).

B. Creating Multiple Groups
Let us presume that the set of leader robots D is selected (or

pre-known) depending on their capabilities such as advanced

sensing systems, recharging stations, etc. Alternatively, the
leader robots can be chosen from a given graph A(k) using the
proposed method in Sec. IV-D, which optimizes the maximum
traversal distance by any robots in the rendezvous process.

Since our objective is to gather all robots to their leader
robots with the least amount of time and energy, we assign
each robot ui ∈ U a leader robot R(ui) ∈ D by optimizing
the following objective function:

R(ui) = argmin
Dm∈D

dA(k)(ui, Dm). (2)

Here, the function dA(k)(ui, uj) represents the shortest path
distance (sum of weights for all edges in the shortest path
connecting them) between ui and uj in the graph A(k) using
Dijkstra’s algorithm [29].

Using the initial graph A(0), the robots are grouped together
to form M sub-graphs Am = (Vm, Em,Wm), where each sub-
graph contains nodes, which satisfy the condition:

ui ∈ Vm ⇐⇒ R(ui) = Dm,∀ui ∈ V. (3)

Note the sub-graphs can be dynamically reconstructed as
the graph evolves with A(k), but we consider a special case in
which the graph is split only initially to reduce computational
load. On the other hand, each sub-graph is dynamically up-
dated based on local changes in the sub-graph (Am = Am(k)).

Using the sub-graphs Am, we construct M shortest-path
trees Tm = (Vm, ETm ,WTm) with root nodes as Dm by
optimizing the distance cost (using weights WTm

) from each
node to the root node. Each node ui in a tree is assigned
a parent p(ui) and children (if any) c(ui). Nodes without
any children are the leaf nodes (see Sec. III-A). Converting
the sub-graphs into tree structures significantly reduces the
number of edges from (potentially) |ETm

| = O(|Vm|2) to
|ETm

| = |Vm|−1 resulting in higher computational efficiency.

C. Hierarchical Rendezvous Algorithm

We propose an efficient hierarchical rendezvous algorithm
that enables every robot in the tree Tm to rendezvous at its
root Dm. Algorithm 2 shows the procedure of the hierarchical
rendezvous that runs iteratively until rendezvous is completed.

The proposed algorithm works as follows. The control
applied to each robot is to move along the shortest path to the
root robot in Tm. All non-root robots start to move towards
their immediate parents in the tree hierarchy towards their root
node. The robot that has at least one child (non-leaf nodes)
can move towards its immediate parent only if all its children
are within a safe sensing range SSRu. Else, it stays and waits
for its children until they all reach its SSR. After reaching
their immediate parents, the robots will change their parent to
the parent of their parents p(u) ← p(p(u)) by updating the
edges of the tree (by removing the link (u, p(u)) and adding
the link (u, p(p(u))) in tree Tm). This also ensures that the
list of children in the parent nodes is updated accordingly
(c(p(u)) = c(p(u))− u, c(p(p(u))) = c(p(p(u))) + u).

Furthermore, as per Algorithm 2, a parent robot u can
move only when all its immediate children are within a SSRu
distance from u. Suppose that a child of u, say v, is initially
farther than SSRu from u and arrives at u later than other

IEEE TRANSACTIONS ON CYBERNETICS 5

Algorithm 2: Hierarchical Rendezvous Control Algorithm
for every tree Tm

repeat
if there is a change in connection/mobility status then

Update Am and the shortest-path tree Tm;

for u ∈ Vm ← every robot in Tm do
q̇u = 0 (default state);
if u = Dm (root node - leader robot) then

if ‖qu − qj‖ ≤ SSRu, ∀j ∈ c(u) then
‖q̇u‖ ≥ 0 (q̇u is not restricted. e.g., Herding);

if u 6= Dm AND a leaf node then
q̇u = (qp(u) − qu) (4)

if ‖qu − qp(u)‖ < ε then
Update the parent of u: p(u)← p(p(u));

if u 6= Dm AND a parent node then
if ‖qu − qj‖ ≤ SSRu, ∀j ∈ c(u) then

Apply controller in Eq. (4);
if ‖qu − qp(u)‖ < ε then

Update the parent of u: p(u)← p(p(u));

Bounding q̇u = min(Sm, ‖q̇u‖)
q̇u
‖q̇u‖

;

until ‖qu − qDm
‖ ≤ ε ∀u ∈ Vm;

children of u. In this case, only the parent robot u waits for
v, while the other children of u keep moving toward u and
subsequently will update their parent from u to p(u).

Below, we discuss the theoretical guarantees and the key
properties of the proposed algorithm. We first prove that the
robots in each tree Tm converge to (rendezvous at) their
leader robots Dm (effectively guaranteeing the solution to the
problem described in Sec. III-C).

Theorem 1. For every sub-graph Am (tree Tm), all the robots
in Vm converge to Dm using Algorithm 2, provided that the
initial graph A(0) is a connected graph and over a finite
time interval between two successive iterations [k, k + 1], the
graph Am(k, k+1) = ∪τ∈{k,k+1}(VAm(τ), EAm(τ)) is jointly
connected.

Proof. We prove convergence and global stability using Lya-
punov analysis for discrete control systems. Let us consider
the Lyapunov-like candidate function

V =
∑
i∈Vm

‖qp(i) − qi‖, (5)

where p(i) represents the parent node of node i in the tree
Tm. For the control in (4), the equilibrium point qeq = qDm

is the position of the root node, where q̇u = 0 ∀u ∈ U . It is
clear that V = 0 if and only if every robot in Vm merges into
Dm, which is the top-most parent in the tree Tm. Therefore,
V > 0 ∀qu 6= qeq , and V = 0 ⇐⇒ qu = qeq ∀u ∈ U ,
implying V is positive definite. The time derivative of V is,

V̇ =
∑
i∈Vm

(qp(i) − qi)T

‖qp(i) − qi‖
(q̇p(i) − q̇i). (6)

As per Algorithm 2, the parent node waits until all the
children are within its SSRu. i.e., q̇p(i) = 0. This is also
the case when the nodes are in the close vicinity of the

equilibrium, where the root node is the parent for all the nodes,
and for the rendezvous case, q̇Dm

= 0. Therefore,

V̇ = −
∑
i∈Vm

(qp(i) − qi)T

‖qp(i) − qi‖
q̇i, (7)

V̇ = − 1

Sm
q̇2
i ≤ 0. (8)

Hence, we show that the Lyapunov candidate function is
negative semidefinite, proving stability of the nonlinear system
in the sense of Lyapunov. Note, for the control in (4), V̇ = 0
only when all the nodes are within ε distance from the root
node. When the parent and child are within SSRu, then both
parent and child apply the same control of moving toward
their parents (but not in opposite direction). Therefore, V̇ ≤ 0
still holds. Finally, the system converges to the invariance set
where V̇ = 0, according to LaSalle invariance principle [30].

Although the graph Am is time-varying (switching topol-
ogy), changes between iterations do not introduce discontinu-
ities because of the condition that the graph is jointly con-
nected between any two finite time intervals (periodic) [31],
[19]. Maintenance of connectivity is addressed in Theorem 2.

Also, in our assumption (Sec. III-B), two robots meet (or
merge into) each other when they are very close ‖qi−qj‖ ≤ ε.
As soon as a robot meet its parent, it re-assigns its parent to the
higher-order parent in the tree. This can induce a jump in V
(a discontinuous decrease in V). However, the number of such
jumps is limited by the total number of robots in the system,
which is finite. Therefore, these discontinuities do not affect
the convergence of the system. This concludes the proof.

Next, we show that the proposed algorithm guarantees that
each robot maintains connectivity with their parents and their
children during the rendezvous process.

Theorem 2. (Connectivity maintenance) Using Algorithm 2,
the tree Tm remains connected during the rendezvous process.

Proof. To prove this, we show that every robot is sensed by at
least one robot during a maneuver. Let P (u,Dm) denote the
path taken by a robot u to reach its root Dm. Let pu denote
any of the parent robots (including Dm) that u pursues in
its hierarchy following the path P (u,Dm). As per the tree,
pu also shares the subset of the path of u, and pu begins
moving towards its parent only if u is within the SSRu, i.e.,
pu moves along the path P (pu,Dm) = P (u,Dm)−P (u, pu).
Maintaining u within the SSRu of pu ensures that u is always
sensed by pu (because SSR ≤ SR), therefore u and pu
maintain their connectivity even when both are moving. This
also includes the case where pu = Dm is freely maneuvering
(to execute herding behavior for example).

In cases where pu cannot move (say, because one of its child
is not yet within its SSR), then u passes pu and continues
to pursue the higher-level parent ppu (if pu 6= Dm). In this
case, u will sense ppu because when u meets pu (when
dTm

(u, pu) ≤ ε), u and ppu can both be sensed by each other
(dTm(u, ppu) ≤ SR). Since every robot is sensed by at least
one robot, mutual protection can be provided for every robot.
Thus, u always maintains connectivity with any of the robots
in its path, hence Am (and tree Tm) is always connected.

IEEE TRANSACTIONS ON CYBERNETICS 6

Theorem 3. The anticipated traversal distance of any robot
in Tm following Algorithm 2 until it rendezvous is bounded
by the shortest path distance dTm(u,Dm).

Proof. Trivial. The tree Tm is the shortest path tree generated
from the sub-graph Am. Thus, the path followed by any robot
u during the rendezvous process has a length (total distance)
of dTm

(u,Dm).

As per the algorithm, each robot senses and pursues it’s
parent node. This can be realized by using relative coordinates
[11] or bearings [3] of the parent node.

Remark 1. This implies that the proposed algorithm is
coordinate-free and that the robots do not require a global
coordinate reference or a global localization system.

Note, in our proposed method, obstacle detection and avoid-
ance are handled using the local motion controllers of each
robot (e.g., [32], [33]) during the phase when the robot moves
toward its parent as per Algorithm 2. For sake of brevity, we do
not analyze the impact of obstacle avoidance on the behavior
of the proposed multi-point rendezvous method. Convergence
will not be affected as long as the obstacles do not completely
disrupt the sensing capabilities of the robot.

Algorithm 2 is designed to handle the case where a com-
munication or the interaction topology is dynamically updated
(see Sec. IV-A). It is also designed to handle cases of mobility
or communication faults if the fault is detected and identified
by at least one robot in the system2 (using the method in
[34] for example). In such cases, we re-generate the tree Tm
using the updated graph A(k), and the algorithm works on the
updated tree structure.

Remark 2. This implies that the proposed algorithm can work
even in cases of intermittent connectivity and is tolerant to
communication or mobility related faults.

The root node of every tree is the rendezvous point of
the sub-group. The root robots Dm in every tree can freely
maneuver as long as all of their immediate children are within
the SSRDm

(which is a requirement in Theorem 2 to safely
maintain connectivity with their children).

Remark 3. This implies that the proposed algorithm enables
herding behavior guided by the moving leader (root) robots.

Herding here means that the leader robots guide (herd) their
group member robots to the final destination positions [6]
either during or after the rendezvous process. Note herding
is different from flocking behavior [35] in which all the robots
tend to travel in the same direction keeping their formation.

D. Choosing Leader Robots (Rendezvous Points)

In situations where the leader robots are not known or
cannot be chosen based on their capabilities3, we present a

2Note our assumption that the faults are identifiable is different from the
assumption used in the Tverberg partition based method [2] which can work
even under the presence of unidentified faults, however at the cost of a
limitation that a densely connected initial graph A(0) is required.

3An example of such situation is a homogeneous multi-robot system where
all the robots have equal capabilities.

simple and efficient strategy to optimally choose M leader
robots (rendezvous points) among all the robots in the network.

In multi-robot applications, it is highly desirable to achieve
rendezvous in the shortest possible time. This goal can be met
if we minimize the (anticipated) maximum distance traveled
by any robot during the rendezvous process. This limits the
time and energy consumed by any robot in the system. Note,
Theorem 3 provides the bound for this maximum distance
which impacts the time to rendezvous. Therefore, we search
the optimal leader robots set D from the set V in the initial
graph A(0) by minimizing the following cost function

C(D) = max
∀Dm∈D

max
∀u∈Vm

dA(k)(u,Dm), (9)

subjected to the following constraints

Lm ≤ |Vm| ≤ Um (10)

where |Vm| denotes the number of robots in the group in which
Dm is the leader after applying the grouping algorithm in
Sec. IV-B. Lm and Um are the bounds for |Vm|. Also, con-
sidering a distance bound TD, we have additional constraint
as follows.

dA(0)(u,R(u)) ≤ TD, ∀u ∈ (V −D). (11)

The first constraint balances the sizes of all M groups
whereas the second constraint restricts the maximum distance
traveled by any robot in the rendezvous task.

Since the cost function to be minimized (Eq. 9) is non-
smooth and non-differentiable, standard analytical methods
such as Integer Linear Programming (ILP) cannot be applied
directly. Also, the number of robots in the pool of potential
candidates of leader robots Vpl among all the robots is very
limited in practice (|Vpl| << N). Thus, the scalability of the
search solution is not an issue.

Therefore, we propose Brute-Force search solution which
is simple and efficient to solve the following optimization
problem:

D∗ = argmin
D∈Dpl

C(D) (12)

where Dpl =

(
Vpl
M

)
is the set of all candidate solutions for

D, and D∗ is the optimal set of leader robots which will
eventually be used in Algorithm 2.

Using Algorithm 1, each robot builds the global graph A
in a distributed manner. This results in every robot sharing
an identical graph A. Then, D∗ is calculated using the initial
graph A(0) as per Algorithm 3. Note that while this optimiza-
tion can be performed distributively by applying Algorithm 3
locally on every robot, doing so is only needed in the initial
stage; therefore, we assume that a central agent performs this
particular optimization and shares the resulting D∗.

In Algorithm 3, the initial connectivity graph A(0) is used
to generate a table Tb, which is an N by N matrix that
presents the all-path shortest-path distances between every
robot pair, with each row representing a source robot. For
example, the element of Tb at the ith row and jth column
presents the shortest-path distance between two robots ui and
uj . By definition, Tb(i, i) is zero.

IEEE TRANSACTIONS ON CYBERNETICS 7

Algorithm 3: Calculate D∗

Data: Graph A from Algorithm 1
Generate table Tb using Dijkstra’s algorithm on A;
cost = inf ;
for D ∈ List of M leaders chosen from MCN selection cases

do
if D satisfies the constraints (10) and (11) then

costo ← C(D) from Eq. (9);
if costo < cost then

cost← costo;
D∗ ← D;

We vary the source robot among all robots and derive
the shortest path from the selected source to every other
robot using Dijkstra’s algorithm [36]. The time complexity
of Dijkstra’s algorithm is O(N2), so varying over N source
robots is O(N3). Suppose that Tb is built. Then, we arbitrarily
choose M source robots out of N robots. There are MCN
selection cases in total. For each case, the chosen M source
robots are the rendezvous robots. In other words, each case
represents a situation where M rendezvous robots are selected.
We derive the cost function in (9) associated with each case,
and search for the case that returns the minimum cost while
obeying the constraints in (10) and (11).

The complexity of Algorithm 3 will scale up with the
number of edges in the graph A(k). Thus, the proposed
solution is effective in cases where A(k) is a sparse graph.
Addressing this problem for dense graphs is an avenue for
future work.

V. EXPERIMENTAL EVALUATION

In this section, we first present the experiment setup, evalu-
ation metrics, and list the experiment scenarios considered in
the experiments. Then, we describe each of the scenarios along
with a discussion of the achieved results. Note the experiment
results of all the scenarios are available in the video4.

A. Experiment Setup

To validate the proposed method, we conducted extensive
simulation experiments in the Robotarium MATLAB platform
[10] which is a free multi-robot and swarm robotics experi-
ment testbed recently made available by Georgia Tech [10].
We chose the Robotarium because it provides testbeds for
both simulations and hardware experiments with the GRITSbot
robots [37] using the same software implementation.

Robotarium has an 2D arena of size 3m × 3m, in which
up to 15 robots (currently supported) can be used in hardware
experiments; however, in the simulations, the number of robots
are not restricted. The GRITSbot robot (size 4cm × 4cm)
exhibits unicycle dynamics, but it can be also controlled via
single integrator dynamics. The coordinates of all the robots
can be accessed in every iteration during the experiments. The
common parameter settings are SR = 0.8m, Sm = 0.1m/s,
ε = 0.1m, SSR = 0.5SR, max number of iterations
kmax = 1000. The Robotarium Robotarium updates the pose
at a maximum of 30 Hz.

4 Youtube link: https://youtu.be/uaiCnw79Sb8

B. Evaluation Metrics

We used the following three metrics to measure the perfor-
mance of the rendezvous task in our experiments.

1) Lyapunov candidate function (Convergence):

L =
∑
ui∈U

‖qui
− qR(ui)

‖. (13)

2) Total distance traveled by all robots (Distance):

Dsum =
∑
ui∈U

kmax∑
k=1

‖qui
(k + 1)− qui

(k)‖. (14)

3) Number of iterations (kstop ≤ kmax) to reach the follow-
ing stop condition:

Stop at kstop if ‖qui
− qR(ui)

‖ ≤ ε, ∀ui ∈ U. (15)

These metrics show how fast the algorithm converges to
achieve rendezvous, and how long the robots travel before
achieving rendezvous.

C. Experiment scenarios

We consider the following five scenarios to verify and
demonstrate the effectiveness and the performance of the
proposed rendezvous strategy:
• Scenario 1 - Single-point rendezvous
• Scenario 2 - Multi-point rendezvous
• Scenario 3 - Multi-point rendezvous with identifiable

faults and/or detectable communication failures
• Scenario 4 - Herding with multi-point rendezvous
• Scenario 5 - Optimization of rendezvous points
Using Scenario 1 (Sec. V-D), we verify the effectiveness

of the Algorithm 2 in terms of convergence and scalability
and analyze how it compares to the state-of-the-art consensus
algorithms. We verify in Scenario 2 (Sec. V-E) the multi-point
capability of our proposed hierarchical rendezvous algorithm.
Then, in Scenario 3 (Sec. V-F) we examine how the proposed
rendezvous algorithm performs under mobility faults and in-
termittent connectivity. This scenario is also used to validate
whether the algorithm guarantees convergence of non-faulty
robots. Scenario 4 (Sec. V-G) exemplifies an effective herding
behavior facilitated by the multi-point rendezvous algorithm.
Finally, in Scenario 5 (Sec. V-H) the advantages of choosing
optimal leader robots are observed.

D. Scenario 1 - Single-point rendezvous

In this scenario, we verify the convergence property of the
Algorithm 2 when M = 1 under the cases N = [10, 20, 30].
Additionally, this scenario is also used to compare the per-
formance of our hierarchical tracking algorithm against two
algorithms available in the literature: the standard coordinates
based consensus algorithm in [11] and the circumcenter based
consensus algorithm in [12]. The robot initial positions and
the respective initial graphs A are shown in Fig. 2.

Since the consensus algorithms are designed to converge
at a consensus point determined by the geometric distribution
of the robots, we adapted them to rendezvous at a specific

https://youtu.be/uaiCnw79Sb8

IEEE TRANSACTIONS ON CYBERNETICS 8

-1 -0.5 0 0.5 1 1.5

x(m)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
y
(m

)

1

2

3

4

5

6

7

8

9

10

-1.5 -1 -0.5 0 0.5 1 1.5

x(m)

-1.5

-1

-0.5

0

0.5

1

1.5

y
(m

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

-1.5 -1 -0.5 0 0.5 1 1.5

x(m)

-1.5

-1

-0.5

0

0.5

1

1.5

y
(m

)

12

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Fig. 2: The top figures show the initial positions of the robots used in the experiments with N = 10 (left), N = 20 (center),
and N = 30 (right). The respective initial network/interaction topologies (undirected graphs) are shown in the bottom figures.

root robot node (instead of a consensus point) by assigning a
zero velocity to the root robot. However, the consequence of
such adaptation is that these algorithms perform slower and
the robots trajectories may be significantly changed during the
course of the process. To the best of our knowledge, there is no
rendezvous control algorithm in the literature that converges to
a specific root node, hence this adaptation to the state-of-the-
art consensus algorithms is deemed necessary for comparison.

1) Results of Scenario 1: Figure 3 presents the resulting
trajectories and the convergence plots (Eq. 13) of the three
algorithms compared in Scenario 1 for the different number
of robots. The results for the metrics of the sum of distance
traveled (Eq. 2) and the number of iterations to reach ren-
dezvous stop condition (Eq. 15) are provided in Table I.

Algorithm Metric N = 10 N = 20 N = 30

Ours Dsum(m) 9.31 23.11 39.45
kstop (#) 549 292 304

CircumCenter [12] Dsum(m) 12.76 30.69 58.7
kstop (#) 592 484 346

Coordinates [11] Dsum(m) 13.99 32.5 46.9
kstop (#) 615 654 -

TABLE I: Results of the metrics E and kstop in Scenario 1.

From Table I, we can notice that the proposed strategy out-
performed the other algorithms in terms of shorter combined
travel distance by all robots to achieve rendezvous (Dsum) and
lower number of iterations required to converge (kstop).

It can be seen from Fig. 3 that the trajectory of the proposed
hierarchical rendezvous algorithm is smoother than the other
two algorithms compared here. This can be attributed to
the fact that the consensus-based algorithms almost achieved
rendezvous at a common point (based on their distribution)
as they are originally supposed to, and then continued to

rendezvous at the desired leader robot due to the adaptation
mentioned before.

In terms of convergence rate, the hierarchical algorithm had
the fastest convergence in general and continued to increase
when the number of robots (N) is increased. Note, when the
number of robots is increased, the number of neighboring
nodes for each robot is larger. This resulted in more efficient
movements observed by the Robotarium pose updates (faster
convergence) when N is larger.

Although the kstop metric showed a significant decrease
when N is increased from 10 to 20, it did not show such
a decrease when N is increased to 30 from 20. Perhaps, this
is because of the current Robotarium design which is expected
to scale up to 100 robots in future.

Similar to circumcenter based algorithm [12], our algo-
rithm guarantees connectivity maintenance resulting in the
connected graph at the end. On contrary, the coordinates based
consensus algorithm [11] does not guarantee connectivity
maintenance, and thus resulted in a disconnected graph for the
case N = 30. In fact, we implemented an improved version
of this coordinate-based algorithm from [4] where potential
fields (weights) are used to ensure connectivity maintenance.
Although the improved algorithm guaranteed connectivity, the
convergence rate of [4] was significantly lower than [11]
mainly because the control inputs in [4] are weighted based
on the distance between the robots which resulted in slower
movement when the robots are close to achieving rendezvous.
Thus, we chose not to present the results of the consensus
algorithm in [4].

E. Scenario 2 - Multi-point rendezvous
The efficiency of the multi-point rendezvous algorithm for

N = 30 with a different number of rendezvous points (M =

IEEE TRANSACTIONS ON CYBERNETICS 9

0 200 400 600 800 1000

iterations (#)

0

2

4

6

8

10

L
y
a
p
u
n
ov

C
a
n
d
id
a
te

F
u
n
ct
io
n
L

Convergence of Single-point Rendezvous (N=10)

Proposed Hierarchical Rendezvous

Coordinates Based Consensus

CircumCenter Based Consensus

0 200 400 600 800 1000

iterations (#)

0

5

10

15

20

25

L
y
a
p
u
n
ov

C
a
n
d
id
a
te

F
u
n
ct
io
n
L

Convergence of Single-point Rendezvous (N=20)

Proposed Hierarchical Rendezvous

Coordinates Based Consensus

CircumCenter Based Consensus

0 200 400 600 800 1000

iterations (#)

0

10

20

30

40

L
y
a
p
u
n
ov

C
a
n
d
id
a
te

F
u
n
ct
io
n
L

Convergence of Single-point Rendezvous (N=30)

Proposed Hierarchical Rendezvous

Coordinates Based Consensus

CircumCenter Based Consensus

Fig. 3: Results of Scenario 1 - The proposed rendezvous Algorithm 2 (left) is compared with the circumcenter [12] (center)
and coordinates [11] (right) based consensus algorithms from the literature under different number of robots. The rendezvous
point for the cases N = 10, N = 20, N = 30 are the robots 3, 5 and 4 respectively. The first row shows the final trajectories
of the robots in case N = 10, the second row shows the final trajectories of the robots when N = 20, the third row shows the
final trajectories when N = 30, and the bottom row compares the rate of convergence (Eq. 13) in all the three cases.

[2, 4, 6]) is analyzed here. This scenario also verifies how the
algorithm scales in terms of the number of rendezvous points.
Note the leader robots (the rendezvous points) are pre-selected
by running the optimal rendezvous point selection strategy in

Sec. IV-D.

1) Results of Scenario 2: In Fig. 4, we show the results of
the converging trajectories of the robots obtained in scenario
2. The trees generated for each leader group is presented at

IEEE TRANSACTIONS ON CYBERNETICS 10

M=2 M=3 M=4

Fig. 4: Results of Scenario 2 - Multi-point rendezvous (N = 30) with M = 2 (left), M = 3 (center), and M = 4 (right). The
initial trees (created using the approach in Sec. IV-B) rooted at their leader robots of each group are depicted in the bottom
row.

0 200 400 600 800 1000

iterations (#)

0

5

10

15

20

25

30

L
y
a
p
u
n
ov

C
a
n
d
id
a
te

F
u
n
ct
io
n
L

Convergence of the Multi-point Rendezvous (N=30)

M=2

M=3

M=4

Fig. 5: Multi-point rendezvous convergence in Scenario 2.

the bottom row of the Fig. 4. In the case of M = 2, the
robots were split into two groups of size 17 and 13 robots.
When M = 3, the number of robots in each group were 16,
8, and 6. For M = 4, the groups had 10, 8, 6, and 6 robots.
Although it is possible to experiment with higher M values,
it will not present meaningful results in terms of convergence
or efficiency. It can be easily seen that the trajectories of the
robots were not a straight path to their leader robots because
the algorithm routes the non-root robots to track their parents
in the hierarchical tree.

Table II shows the metrics Dsum and kstop in scenario 2.
The robots traveled shorter due to the fact that the number of
robots in each group is reduced when M is increased.

The resulting tree graphs in Fig. 4 show that the grouping
algorithm in Sec. IV-B led to evenly distributed subgroups
from the initial graph A(0) (see the bottom right graph of
Fig. 2). Also, see that within every subgraph, the robots
converged with smooth trajectories toward their leader robots
(rendezvous nodes).

The convergence of the algorithm under different M values
are shown in Fig. 5. It can be seen that the higher the number
of leaders (M), the faster the convergence due to the fact that
each group runs the algorithm in parallel and the average size
of the group is reduced when M is increased.

F. Scenario 3 - Multi-point rendezvous with faults

This scenario is designed to verify the robustness of the
proposed rendezvous strategy under identified communication
and mobility faults. The number of robots and rendezvous
points in this scenario is N = 30 and M = 2. The

Metric M = 2 M = 3 M = 4
Dsum(m) 29.51 21.81 15.62
kstop (#) 199 182 131

TABLE II: Results for the Algorithm 2 in Scenario 2.

IEEE TRANSACTIONS ON CYBERNETICS 11

Fig. 6: Robot trajectories in Scenario 3 - Multi-point ren-
dezvous with faulty robots. The robots 9 and 25 are simulated
with mobility faults (at t = 25 and t = 50 respectively)
whereas the robots 30 and 11 are simulated with communi-
cation faults (at t = 25 and t = 50 respectively). The robot
11 regained its connection at t = 100 (hence, it could achieve
rendezvous with its root robot 18).

0 50 100 150 200 250

iterations (#)

0

5

10

15

20

25

30

L
y
a
p
u
n
ov

C
a
n
d
id
a
te

F
u
n
ct
io
n
L

Multi-point Rendezvous with Faults (N=30, M=2)

At t=25, the drop in L is due to:

Robot 9 - mobility fault;

Robot 30 - disconnected.

At t=50, the drop in L is due to:

Robot 25 - mobility fault;

Robot 11 - disconnected.

At t=100, L increases because

Robot 11 is reconnected.

Fig. 7: Convergence plot of Scenario 3. The Lyapunov function
L in Eq. 13 is calculated only for non-faulty robots. Note
the sudden drop and raise in the L value due to the injected
(simulated) faults. The non-faulty robots achieved rendezvous.

corresponding initial graph is shown in Fig. 2 (right) and the
corresponding trees are shown in Fig. 4 (left, case M = 2).

At arbitrary instances, randomly selected robots (except the
root nodes) are injected with mobility faults (by setting their
velocities to follow a random sinusoidal trajectory following
the strategy in [2]) or with communication faults (by removing
the robot in the graph to simulate disconnection for instance).

Specifically, the following faults situations are simulated:

• At iteration t = 25+, robots 9 and 30 are respectively
injected with a mobility fault and a communication fault
(sudden disconnection).

• At t = 50+, the robot 25 faces a mobility fault and the
robot 11 faces a communication disruption (to simulate
an intermittent connectivity).

• At t = 100+, the robot 11 regains connectivity with its
neighbors (e.g., using a reactive motion planner [38]).

1) Results of Scenario 3: Figures 6 and 7 show the results
of the trajectories and convergence plot in Scenario 3. It can
be seen from Fig. 6 that the robot 30 was participating in the
rendezvous process initially, but as soon as it got disconnected,
it did not move. On the other hand, the robot 11 (intermittent
connectivity) lost its connection and did not move initially,
nevertheless, it completed rendezvous process as soon as it got
reconnected. Similarly, the robots 9 and 25 (mobility faults)
got removed from the tree as soon as they became faulty and
identified as faulty robots. The other non-faulty robots adapted
their trajectories accordingly to achieve rendezvous.

These behaviors can also be observed from the convergence
of the Lyapunov candidate function (with only non-faulty
robots) shown in Fig. 7 where the faults are tolerated by the
proposed rendezvous algorithm.

G. Scenario 4 - Herding with multi-point rendezvous

In this scenario, we show how the proposed algorithm
enables herding behavior by aiding the movement of ren-
dezvous (leader) robots to their specific goal positions in the
arena during or after achieving rendezvous. We simulate this
scenario with N = 20 and M = 2 (see the center graph
in Fig. 2). The leader robots are chosen as 1 and 13 which
are capable to reach their final destinations (1, 0) and (0,−1)
(indicated as ‘stars’) respectively in the environment.

We show two cases where the herding starts immediately
after rendezvous process is initialized (at t = 1, first case)
and the herding starts in between the rendezvous process (at
t = 100, second case). We do not show the case where the
herding starts after the rendezvous is completed (when the stop
condition is reached), because in this case both the rendezvous
and the herding tasks are disconnected.

1) Results of Scenario 4: Figure 8 presents the evolution
of trajectories in Scenario 4. In Fig. 8, the initial robot
positions are denoted by hollow circles for member robots
and solid circles for the leader robots. The final destinations
are indicated as stars. The herding behavior is achieved by
setting a position controller of the leader robots to their final
destination positions. Nonetheless, they can move toward their
destinations (only) as long as they can see their immediate
children within the SSR. Thus, the rendezvous process is not
disrupted during the herding movement.

It can be seen that in both cases the robots achieved
rendezvous while herding to the final destination by the leader
robots. At t = 100, the trajectories of the robots indicate that
the robots perform both rendezvous and herding in the first
case while the robots perform rendezvous only in the second
case. At t = 200, the herding is almost completed in the
first case whereas it took up to t = 300 iterations to complete
herding in the second case. This is because the herding started
later in the second case compared to the first case.

It’s worth noting that the same algorithm proposed in
Sec.IV-C executed both rendezvous and herding simultane-
ously. This is done by setting the velocities of the leader
robots to zero (for rendezvous) and to follow a trajectory to a
destination position (for herding).

IEEE TRANSACTIONS ON CYBERNETICS 12

(a) t = 100. (b) t = 200. (c) t = 300.

Fig. 8: Scenario 4 - Evolution of trajectories at iterations t = 100, t = 200, and t = 300. The robot herding stared at t = 1 in
the first case (top row) and at t = 100 in the second case (bottom row). The leader robots in both cases are 1 and 13 and the
destination position for the leader robots while herding their group members are (1, 0) and (0,−1) respectively. The earlier
the herding started, the faster the final destination was reached while simultaneously performing the rendezvous.

H. Scenario 5 - Multi-point rendezvous with optimization of
rendezvous points

Through this scenario, we explicate the advantages of
choosing optimal rendezvous points (selecting leader robots)
using the strategy in Sec. IV-D. To better show this scenario,
we need the higher number of robots, and hence we chose
N = 60. Given the limited number of robots in Robotarium,
we created our own simulation setup in MATLAB replicating
point dynamics in a cluttered (obstacle-rich) environment of
size 50m× 50m with N = 60 and M = 2.

In the simulation of Scenario 5, we applied a constraint on
sensing ability such that a robot can sense another robot only
if there is a line of sight path between them (obstacle-free
movements). The simulation settings for this scenario are ε =
0.05m, SR = 10m, SSR = ε, Sm = 0.3m/s. Other parameter
settings are the same as that of the previous scenarios. The
sampling rate at which the algorithm runs is 10 Hz. A sample
trial is shown in Fig. 9 in which the distribution of robots
along with their connectivity links are captured.

As with the previous scenario, we do not implement an
obstacle avoidance algorithm in robot movements. However, to
deal with the obstacles, we applied a constraint on the sensing
ability. A robot can sense another robot only if there is a
line of sight path between these two robots, i.e., if there are
no obstacles on the way. The parameters settings ensure that
all the robots follow obstacle-free paths while tracking their
hierarchical parents to rendezvous at its root node.

We compare the performance of optimal rendezvous points
against randomly selected rendezvous points in a Monte-Carlo

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Fig. 9: Scenario 5 - An example trial showing the random
deployment of initial positions of all robots (indicated as blue
circles) in an obstacle-rich environment. The green dotted lines
represent the connectivity links between the robots. The red
curves indicate the boundaries of the obstacles.

simulation with 50 trials (each with random initial positions
forming a connected graph). The settings for the optimization
constraints are chosen as Lm = 6 and Um = 45 while TD is
unconstrained to enable longer feasible paths to the leaders.

1) Results of Scenario 5: Figure 10 shows the convergence
plot in Scenario 5 with the L values averaged over the
iterations. The Table III shows the results of the evaluation
metrics in Scenario 5 - Energy E (Eq. 2) and the number of
iterations to reach the stop condition kstop (Eq. 15) - their
mean and standard deviation (STD) over all the trials.

IEEE TRANSACTIONS ON CYBERNETICS 13

Selection of Leader Robots Dsum (m) kstop (#)
Mean STD Mean STD

Random (Monte-Carlo) 1747 584 2316 751
Optimized (Sec. IV-D) 1160 134 1234 129

TABLE III: Results of the metrics E and kstop in Scenario 5.

0 1000 2000 3000 4000 5000

iterations (#)

0

500

1000

1500

L
y
a
p
u
n
ov

C
a
n
d
id
a
te

fu
n
ct
io
n
L

Convergence of the Multi-point Rendezvous (N=60)

RandomSelect

OptimalSearch

Fig. 10: Convergence plot in Scenario 5 - Comparison of L
(averaged over 50 iterations) in case of optimally selected
leader robots using the proposed algorithm in Sec. IV-D
against randomly selected leader robots.

It can be observed from Fig. 10 that the simulations with
optimized leader robots resulted in a significantly faster con-
vergence compared to that of the simulations with randomly
selected leader robots. It is important to note that the selection
of leader robots may be due to the robot capabilities in some
applications where such optimization is not possible. Never-
theless, in applications where it is feasible to optimize the
leader robots, the proposed strategy can be greatly beneficial.

From the Table III, we can see that the mean and standard
deviation of evaluation metrics (E and kmax) are considerably
better when the optimal search method in Sec. IV-D is used
compared to the case where the optimal search method is
not used. This means that the rendezvous algorithm quickly
achieved rendezvous (the robots traveled shorter distances in
total) because of having optimal rendezvous points as a result
of the optimization. This is an indirect reduction of total energy
consumption of the robots because the robot energy costs are
dominated by the movements (locomotion energy) [21].

Although the optimization algorithm (Sec. IV-D) is scalable
for sparse graphs, we are exploiting other methods such as
Linear Programming to choose optimal leader robots from an
initial dense graph as part of our future work.

VI. CONCLUSIONS

In this paper, we propose a novel coordinate-free multi-
point rendezvous strategy and a new, efficient hierarchical
rendezvous algorithm to gather robots in different groups. This
is a step towards achieving autonomous multi-point recharging
and solving coordinated multi-point flocking control problems.

Through extensive simulation experiments (with the Robo-
tarium multi-robot testbed), we demonstrated the effectiveness
of the proposed algorithm along with its properties such
as guaranteed convergence, connectivity maintenance, and
tolerance to intermittent connectivity and identifiable mobility

faults. We have also shown that the proposed algorithm out-
performed the state-of-the-art consensus controllers in terms
of convergence rate and capability.

Moreover, we introduced and validated an application of
multi-group herding of multi-agent systems, aided by the
proposed multi-point rendezvous algorithm. Finally, we exper-
imentally verified a simple and effective optimization strategy
for selecting rendezvous points (leader robots) that allows
the robots to achieve faster convergence and travel shorter
distances. The experiments and results are summarized in the
video available at https://youtu.be/uaiCnw79Sb8.

Future works include devising a failure detection system
aided by the hierarchical tree structure to detect a robot’s com-
munication or mobility failure by its immediate parent robot
using a heartbeat communication mechanism and analyzing
the history of changes in the graph for example.

ACKNOWLEDGMENT

This work was partially supported through the “NSF Center
for Robots and Sensors for the Human Well-Being, NSF Grant
No. 1439717”.

REFERENCES

[1] J. Lin, A. Morse, and B. Anderson, “The multi-agent rendezvous
problem. an extended summary,” in Cooperative Control. Springer,
2005, pp. 257–289.

[2] H. Park and S. A. Hutchinson, “Fault-tolerant rendezvous of multirobot
systems,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 565–582,
June 2017.

[3] R. Zheng and D. Sun, “Multirobot rendezvous with bearing-only or
range-only measurements,” Robotics and Biomimetics, vol. 1, no. 1, p. 4,
Oct 2014.

[4] M. Zavlanos, M. Egerstedt, and G. Pappas, “Graph theoretic connectivity
control of mobile robot networks,” Proceedings of the IEEE, vol. 99,
no. 9, pp. 1525–1540, 2011.

[5] C. Vrohidis, P. Vlantis, C. P. Bechlioulis, and K. J. Kyriakopoulos,
“Reconfigurable multi-robot coordination with guaranteed convergence
in obstacle cluttered environments under local communication,” Au-
tonomous Robots, pp. 1–21, 2017.

[6] A. Pierson and M. Schwager, “Bio-inspired non-cooperative multi-robot
herding,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), May 2015, pp. 1843–1849.

[7] N. Mathew, S. L. Smith, and S. L. Waslander, “A graph-based approach
to multi-robot rendezvous for recharging in persistent tasks,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 3497–3502.

[8] B. Li, B. Moridian, and N. Mahmoudian, “Underwater multi-robot
persistent area coverage mission planning,” in OCEANS 2016 MTS/IEEE
Monterey, Sept 2016, pp. 1–6.

[9] M. Meghjani, S. Manjanna, and G. Dudek, “Multi-target rendezvous
search,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2016, pp. 2596–2603.

[10] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The robotarium: A remotely accessible swarm robotics
research testbed,” in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 1699–1706.

[11] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on
automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[12] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed mem-
oryless point convergence algorithm for mobile robots with limited
visibility,” IEEE Transactions on Robotics and Automation, vol. 15,
no. 5, pp. 818–828, 1999.

[13] D. V. Dimarogonas and K. J. Kyriakopoulos, “On the rendezvous
problem for multiple nonholonomic agents,” IEEE Transactions on
Automatic Control, vol. 52, no. 5, pp. 916–922, May 2007.

[14] L. Sabattini, C. Secchi, N. Chopra, and A. Gasparri, “Distributed control
of multirobot systems with global connectivity maintenance,” IEEE
Transactions on Robotics, vol. 29, no. 5, pp. 1326 – 1332, 2013.

https://youtu.be/uaiCnw79Sb8

IEEE TRANSACTIONS ON CYBERNETICS 14

[15] J. Alonso-Mora, E. Montijano, M. Schwager, and D. Rus, “Distributed
multi-robot formation control among obstacles: A geometric and opti-
mization approach with consensus,” in Robotics and Automation (ICRA),
2016 IEEE International Conference on. IEEE, 2016, pp. 5356–5363.

[16] J. Yu, S. M. LaValle, and D. Liberzon, “Rendezvous without coordi-
nates,” IEEE Transactions on Automatic Control, vol. 57, no. 2, pp.
421–434, Feb 2012.

[17] H. Park and S. Hutchinson, “Robust rendezvous for multi-robot system
with random node failures: an optimization approach,” Autonomous
Robots, Feb 2018.

[18] M. Ji, A. Muhammad, and M. Egerstedt, “Leader-based multi-agent
coordination: controllability and optimal control,” in 2006 American
Control Conference, June 2006.

[19] Z. Chen and H. T. Zhang, “Analysis of joint connectivity condition for
multiagents with boundary constraints,” IEEE Transactions on Cyber-
netics, vol. 43, no. 2, pp. 437–444, April 2013.

[20] H.-T. Zhang, Z. Chen, and M.-C. Fan, “Collaborative control of multive-
hicle systems in diverse motion patterns,” IEEE Transactions on Control
Systems Technology, vol. 24, no. 4, pp. 1488–1494, 2016.

[21] R. Parasuraman, K. Kershaw, P. Pagala, and M. Ferre, “Model based
on-line energy prediction system for semi-autonomous mobile robots,”
in Intelligent Systems, Modelling and Simulation (ISMS), 2014 5th
International Conference on. IEEE, 2014, pp. 411–416.

[22] T. Setter and M. Egerstedt, “Energy-constrained coordination of multi-
robot teams,” IEEE Transactions on Control Systems Technology, 2016.

[23] P. Lin, W. Ren, H. Wang, and U. M. Al-Saggaf, “Multiagent rendezvous
with shortest distance to convex regions with empty intersection: Algo-
rithms and experiments,” IEEE Transactions on Cybernetics, vol. PP,
no. 99, pp. 1–9, 2018.

[24] P. Zebrowski, Y. Litus, and R. T. Vaughan, “Energy efficient robot
rendezvous,” in Fourth Canadian Conference on Computer and Robot
Vision, Canada, 2007.

[25] K. Krishnanand and D. Ghose, “Theoretical foundations for rendezvous
of glowworm-inspired agent swarms at multiple locations,” Robotics and
Autonomous Systems, vol. 56(7), pp. 549 – 569, 2008.

[26] B. W. Douglas, Introduction to Graph Theory, 2nd ed. Illinois, USA:
Prentice Hall, 2001.

[27] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University Press,
2009, electronically available at http://coordinationbook.info.

[28] “Graphs of maximum diameter,” Discrete Mathematics, vol. 102, no. 2,
pp. 121 – 141, 1992.

[29] S. M. Lavalle, Planning Algorithms. Cambridge University Press, 2006.
[30] J. P. La Salle, The stability of dynamical systems. SIAM, 1976.
[31] E. Montijano and C. Sagüés, “Robotic networks and the consensus

problem,” in Distributed Consensus with Visual Perception in Multi-
Robot Systems. Springer, 2015, pp. 9–19.

[32] J. Kim, “Cooperative exploration and networking while preserving
collision avoidance,” IEEE transactions on cybernetics, vol. 47, no. 12,
pp. 4038–4048, 2017.

[33] B.-C. Min, R. Parasuraman, S. Lee, J.-W. Jung, and E. T. Matson, “A
directional antenna based leader–follower relay system for end-to-end
robot communications,” Robotics and Autonomous Systems, vol. 101,
pp. 57–73, 2018.

[34] F. Arrichiello, A. Marino, and F. Pierri, “Distributed fault detection and
recovery for networked robots,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Sept 2014, pp. 3734–3739.

[35] R. Vaughan, N. Sumpter, J. Henderson, A. Frost, and S. Cameron,
“Experiments in automatic flock control,” Robotics and autonomous
systems, vol. 31, no. 1, pp. 109–117, 2000.

[36] S. Pettie, “A new approach to all-pairs shortest paths on real-weighted
graphs,” Theoretical Computer Science, vol. 312, no. 1, pp. 47 – 74,
2004, automata, Languages and Programming.

[37] D. Pickem, M. Lee, and M. Egerstedt, “The gritsbot in its natural habitat-
a multi-robot testbed,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on. IEEE, 2015, pp. 4062–4067.

[38] S. Caccamo, R. Parasuraman, L. Freda, M. Gianni, and P. gren, “Rcamp:
A resilient communication-aware motion planner for mobile robots
with autonomous repair of wireless connectivity,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Sept
2017, pp. 2010–2017.

Ramviyas Parasuraman is currently a postdoctoral
researcher at Purdue University. His research mainly
focuses on networked robot systems, rescue robots
and teleoperation. From 2014 to 2016, Dr. Parasur-
aman held a postdoctoral research position at KTH
Royal Institute of Technology, where he worked in
two European projects TRADR and RECONFIG.
Previously, he worked at the European Organization
for Nuclear Research (CERN) as a Marie-Curie
Fellow from 2011-2014 and received his Ph.D. in
Robotics and Automation from Universidad Politc-

nica de Madrid, Spain, in 2014. He received M.Tech from Indian Institute
of Technology Delhi (2010) and B.Engg (2008) from Anna University, India.
Dr. Parasuraman serves as a reviewer and a program committee member in
several journals and conferences in robotics.

Jonghoek Kim is an Assistant Professor in the
Department of Electrical and Computer Engineering
at Hongik University, Republic of Korea. His re-
search is on target tracking, control theory, robotics,
multi-agent systems, and optimal estimation. He
worked as a senior researcher at Agency for Defense
Development in Republic of Korea from 2011 to
2018. In 2011, he earned a Ph.D. degree co-advised
by Dr. Fumin Zhang and Dr. Magnus Egerstedt at
Georgia Institute of Technology, USA. Jonghoek
Kim received his M.S. in Electrical and Computer

Engineering from Georgia Institute of Technology in 2008 and his B.S. in
Electrical and Computer Engineering from Yonsei University, Republic of
Korea in 2006.

Shaocheng Luo is a Ph.D. student in Robotics in
the Department of Computer and Information Tech-
nology at Purdue University (West Lafayette). Prior
to beginning his Ph.D. program in 2014, Mr. Luo
obtained his B.S. degree in Mechanical Engineering
from Harbin Institute of Technology, China in 2009,
and M.S. degree in Mechatronic Engineering from
Zhejiang University, China in 2012. His research
interests include multi-robot systems, robotic co-
ordination control, and wireless communication. In
addition to pursuing his Ph.D. degree, Mr. Luo has

developed interests in robotic system applications in environmental monitoring
and operations and Cyber-Physical Systems.

Byung-Cheol Min is an Assistant Professor in the
Department of Computer and Information Technol-
ogy at Purdue University. He directs the SMART
Lab at Purdue University, which performs research
in multi-robot systems, robotic sensor networks,
and human-robot interaction with emphasis in field
robotics and assistive technology and robotics. From
2014 to 2015, prior to his faculty position at Purdue
University, Dr. Min held a postdoctoral fellow po-
sition at the Robotics Institute of Carnegie Mellon
University. He received his Ph.D. in Technology with

a specialization in Robotics from Purdue University, West Lafayette, IN USA,
in 2014. He received his M.S. degree in Electronics and Radio engineering
in 2010 and B.S. degree in Electronics Engineering in 2008 from Kyung Hee
University, Republic of Korea.

	Introduction
	Related Work
	Background
	Graph Theory
	 Assumptions and Definitions
	Problem Statement

	Multi-point Rendezvous Strategy
	Building the Connectivity Graph in a Distributed Manner
	Creating Multiple Groups
	Hierarchical Rendezvous Algorithm
	Choosing Leader Robots (Rendezvous Points)

	Experimental Evaluation
	Experiment Setup
	Evaluation Metrics
	Experiment scenarios
	Scenario 1 - Single-point rendezvous
	Results of Scenario 1

	Scenario 2 - Multi-point rendezvous
	Results of Scenario 2

	Scenario 3 - Multi-point rendezvous with faults
	Results of Scenario 3

	Scenario 4 - Herding with multi-point rendezvous
	Results of Scenario 4

	Scenario 5 - Multi-point rendezvous with optimization of rendezvous points
	Results of Scenario 5

	Conclusions
	References
	Biographies
	Ramviyas Parasuraman
	Jonghoek Kim
	Shaocheng Luo
	Byung-Cheol Min

