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Abstract— In multi-agent systems, limited resources must
be shared by individuals during missions to maximize the
group utility of the system in the field. In this paper, we
present a generalized adaptive self-organization process for
multi-agent systems featuring fast and efficient distribution
of a consumable and refillable on-board resource throughout
the group. An adaptive inter-agent spacing (AIS) controller
based on individual resource levels is proposed that spaces out
high resource bearing agents throughout the group including
the group boundary extrema, and allows low resource bearing
agents to adaptively occupy the in-between spaces receiving
resource from the high resource bearing agents without over-
crowding. Experimental results for cases with and without
the proposed AIS controller validate faster convergence of
individual resource levels to the group mean resource level
using the proposed AIS controller. The generalized approach
of the self-organizing process allows flexibility in adapting the
proposed AIS controller for various multi-agent applications.

I. INTRODUCTION

Multi-agent systems have a rich potential for application
in monitoring and surveillance [1], exploration [2], search
and rescue [3] etc. In many situations, agents are required
to share/distribute certain on-board resources with/to other
agents in the group. In the robotics arena, such on-board
resources have been defined as consumable and refillable
resources that robots use during any task execution [4].

A multi-agent system of vacuum cleaning robots is con-
sidered as an example. Each robot uses on-board battery
energy to move around the vacuuming area and fills up its
dust storage with absorbed dust. For this application, the on-
board energy and the available dust storage space for each
robot can be considered its on-board resource [4]. Individuals
may collect different amounts of dust and use different
battery levels while vacuuming certain areas. Without any
immediately available resource replenishing stations for the
system, the maximum group potential of the multi-robot
system for the task can only be utilized until the robot with
the lowest available resource level exhausts its resource.

Designing physical mechanisms of sharing such indi-
vidual internal resources with other agents in the group
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is a challenging problem, but so is the self-organization
of the multi-agent system to ensure an efficient process.
Numerous problems have been identified in literature on
the topic, including delays in fully connected networks for
coordination involving limited communication bandwidth
[5], space limitations and interference with other agents
in locally connected networks for internal resource sharing
[6]. Over-crowding of zero/low resource bearing agents on
high resource bearing agents can potentially reduce resource
sharing/distribution efficiency [7]. Inept distribution of high
resource bearing agents throughout the group may also result
in a slow resource distribution process [8].

Energy sharing/distribution between agents to extend the
working life of multi-robot groups have previously been
proposed in [9], [10]. A recharging process of multi-agents
in the field using a traveling tanker approach was proposed
in [11]. Some relevant models for efficient resource distri-
bution can also be found among disaster relief distribution
models [12][13]. An optimal dispatching model of point-of-
distribution locations, and effective models for relief distri-
bution from such locations to victims were simulated with
detailed performance analysis in [8]. Several such multi-
agent organization models proposed in literature provide
effective results in efficient resource distribution, but very
few are able to adapt to changing circumstances in the field
over time once initially deployed.

In this paper, we present a generalized adaptive self-
organization process for a multi-agent system to ensure fast
and efficient inter-agent resource sharing/distribution. An
Adaptive Inter-agent Spacing (AIS) controller dependent on
current individual resource levels is proposed that:
• ensures distribution of higher resource bearing agents

throughout the group including group boundary ex-
trema;

• prevents over-crowding of low resource bearing agents
on high resource bearing agents;

• converges agents to an equilibrium inter-distance at
group resource equilibrium.

The generalized setup also allows adaptation of the pro-
posed AIS controller for disaster relief distribution, task allo-
cation and various other applications in multi-agent systems.

II. PROBLEM SETUP

We consider N fully actuated point mass mobile agents
randomly distributed on a planar surface with dynamics of
the form:

q̇i = vi and v̇i = ui, i ∈ {1,2, ..,N} (1)
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(a) Inter-agent spacing function plot for
agent i in set A or set B, based on agent
j resource level b j with ρ = 0.3, bm = 50
and de = 2.
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(b) Interaction potential Ui j(||qi j||) vs.
||qi j|| plot for increasing inter-agent dis-
tance di j with bm = 50, α = 0.5 and β =
0.5.
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(c) Scalar force Fi j(||qi j||) vs. ||qi j|| plot
for increasing inter-agent distance di j,
bm = 50, α = 0.5 and β = 0.5 without
velocity damping.

Fig. 1: Inter-agent spacing is dictated by the group mean resource level bm and the resulting classification of agent i of itself
and its neighbor j into set A or set B. Ui j reaches a minimum along the derived di j = qi j line with zero force magnitude.

in which qi ∈ Rp, vi ∈ Rp, and ui ∈ Rp denote the position,
velocity and control input of robot i. We denote the on-board
resource level on each agent to be distributed as 0< bi≤ 100,
i∈ {1,2, ..,N}, and the mean resource level of the group of N
agents as bm. At any given time, agent i ∈ ({A,B} 3 A∪B =
Λ, A∩B = /0), where A is defined as the set of agents with
bi > bm, and B as the set of agents with bi ≤ bm.

Maintaining generality, we assume that each agent is able
to transmit/receive resource b to/from other agents within a
specified radius rb, at a rate dependent on the number of
agents within rb due to space and bandwidth limitations. We
model generalized resource sharing for agent i as:

δbi = γ
∑∆bi j

n
i, j ∈ ({1,2, ..,N}|qi j ≤ rb) (2)

where γ is a positive scalar control gain, ∆bi j = b j−bi, and
n is its number of neighboring agents within radius rb.

The objective is for all N agents to adaptively self-organize
in the group based on current on-board resource levels bi, i∈
{1,2, ..,N} to converge to the group mean resource level bm
and equilibrium inter-distance de. We base our AIS controller
framework on the multi-robot segregation model previously
proposed by Santos et al. in [14] following initial work by
Kumar et al. on the differential potential concept in [15].

III. PROPOSED SOLUTION

A. Control Law

For efficient resource distribution in a group of N mobile
agents governed by the dynamics model in (1), we base our
proposed control law on the previously established multiple
heterogeneous units segregation solution put forward in [?]:

ui =−∑
j 6=i

OqiUi j(||qi j||)−∑
j 6=i

(vi− v j) (3)

where Ui j(||qi j||) is an artificial potential function defining
the interaction between agents i, j ∈ {1,2, ..,N}, dependent
on the Euclidean norm of the vector qi j = qi−q j. The second
term acts as a velocity damping force such that, agents
match their velocities to counter large variations in potential
differences among agents that cause chaotic movements.

The artificial potential field Ui j is defined as a function of
current and target relative distances between a pair of agents:

Ui j(||qi j||) =
1
2

α(||qi j||−di j)
2 +β (ln||qi j||+

di j

||qi j||
) (4)

where α and β are positive scalar control gains, and di j is
a positive inter-agent target distance parameter described as
a function of b j and bm in Section III-B. We assume that at
the initial time instant ||qi j|| 6= 0, for which (4) is undefined;
i.e. agents i, j do not collide. The corresponding interaction
force can therefore be defined as Fi j(||qi j||) = OUi j(||qi j||).

B. Adaptive Inter-agent Spacing for Efficient Resource Dis-
tribution

For efficient distribution of resource b, we design the inter-
agent target distance parameter di j as a continuous function
based on individual agent resource levels with the following
properties:
• At system equilibrium, all agents converge to the mean

resource level bm and maintain the equilibrium agent
inter-distance de.

• Agents in set A maintain inter-distances proportional to
the other’s resource level above bm, such that the higher
the amount of resource to be distributed by the pair for
equilibrium, the higher the number of agents from set B
that can occupy the created in-between space to receive
the distributed resource.

• Agents in set B maintain inter-distances inversely pro-
portional to the other’s resource level equal to or below
bm, such that adequate spacing is available between
agents in set B dependent on their resource levels to
prevent crowding on set A agents around them.

We propose the following continuous function di j(b j) for
agents classifying themselves into A or B and interacting
with agents in Λ, derived from a smoothed approximation
of the rectified linear unit (ReLU) function, satisfying the
above set requirements:

di j(b j) =

{
ρ ln(1+ eb j−bm)+de if i ∈ A, j ∈ Λ

ρ ln(1+ ebm−b j)+de if i ∈ B, j ∈ Λ
(5)



where ρ is a positive scalar control gain. Figure 1a illustrates
the distance relationship between agents for the two cases for
ρ = 0.3, de = 2 and bm = 50. The corresponding potential
function and scalar force plots are shown in Fig. 1b and 1c
for α = 0.5 and β = 0.5.

The significance of the proposed function di j(b j) is that it
ensures that agents with large on-board resources for distri-
bution spread out throughout the group without accumulating
together. This is particularly important for efficient resource
distribution in systems where the initial resource distribution
is skewed on certain areas of the group. Furthermore, the
design of the spacing between agents with lower resources
ensures that no agent with resource level larger than the mean
is over-crowded with agents with lower resource level agents
at any given time. This allows fast and efficient resource
transfer between agents within rb when transfer limits are
present dependent on the number of connecting agents.

C. Controller Analysis

To investigate the stability and the convergence of the
multi-agent system to equilibrium inter-agent distance de
using the proposed control law, we define the Lyapunov
function as,

V (q,v) =U(q)+
1
2

vTv (6)

where q∈RN p and v∈RN p are stacked position and velocity
vectors of N robots in the system, and U(q) : RN p −→ R>0
is the collective potential energy of the system written as,

U(q) =
1
2 ∑

i∈A
∑
j 6=i

Ui j(||qi j||)+
1
2 ∑

i∈B
∑
j 6=i

Ui j(||qi j||) (7)

where the first term represents the total potential for pairs of
agents i ∈ A, j ∈ Λ and the second term for pairs of agents
in i ∈ B, j ∈ Λ. The collective dynamics of the system is
written as,

q̇ = v, v̇ =−OU(q)− L̂(q)v (8)

where L̂(q) is the Kronecker product of the fully connected
system’s graph Laplacian L(q) and identity matrix Ip.

The proposed controller setup is similar to the multi-agent
segregation controller proposed by Santos et al. in [14].
In the segregation controller, each agent utilizes a binary
classifier on its interacting agent to check if it is in the
same partition to define its interaction with other agents,
as opposed to the controller proposed in this paper, where
each agent classifies itself into either set A or B to define its
interaction with other agents in the group.

Therefore, with the total system energy defined as (6),
collective dynamics as (8), resource sharing and control
defined as (2) and (3) respectively for the proposed system,
we refer to the controller analysis shown by Santos et
al. in [14], and conclude that the multi-agent system with
agents exclusively in sets A or B asymptotically converges
to the set equilibrium inter-agent distance de without any
collision where the system’s collective potential reaches a
local minimum. We also conclude that the velocity of each
agent is bounded and all velocities match at equilibrium.

IV. VALIDATION

A. Setup

To validate our proposed concept, we show that a group
of agents randomly distributed on a flat planar surface each
having a different resource level 0 < bi ≤ 100, successfully
converges to bm faster with AIS rather than without. We
define the base case for our comparison as all agents ren-
dezvous with agent inter-distance de and share resources with
all neighbors within rb. With such a setup, where all aspects
of the experiment are held constant except for the proposed
di j function, we isolate the effectiveness of the proposed AIS
control law on system performance.

The validation process is set up with four specific sce-
narios to study the performance and effectiveness of our
proposed resource distribution method in comparison to the
defined base method. The scenarios include N randomly
distributed agents on the xy plane initially having:
• Scenario 1 (S1): Left-skewed
• Scenario 2 (S2): Bi-modal
• Scenario 3 (S3): Normal
• Scenario 4 (S4): Random

distributed resource levels on agents along the planar x-axis,
each being compared to its corresponding base approach
solution. The left-skewed initial distribution is designed such
that all agents on the right one-quarter area of the x-y plane
have 80 ≤ b ≤ 100, while all others have 0 < b ≤ 20. The
bi-modal initial distribution is designed such that all agents
on the left one-quarter and right one-quarter area of the
x-y plane have 80 ≤ b ≤ 100 and while all others have
0 < b≤ 20. The normal initial distribution is designed such
that all agents on the middle one-quarter area of the x-y plane
have 80≤ b≤ 100, while all others have 0 < b≤ 20. Lastly,
the random initial distribution allows all agents in the x-y
plane to have a random resource level 5 < b≤ 100.

Each set of experiments consist of N = 100 robots, each
with zero initial velocity, with exaggerated parameters de = 2,
rb = 3, α = 0.8, β = 0.4, γ = 0.1 and ρ = 0.8 for brevity of
the simulations.

B. Experiment

Figure 2a, 2b and 2c each illustrate sets of simulation
time step sequences using the proposed method and its
corresponding base method (a.1, a.2), (b.1, b.2) and (c.1,
c.2) for scenarios S1, S2 and S3 respectively.

Following the di j inter-distance formulation of the pro-
posed AIS controller, agents with high resource levels from
the right in S1 Fig. 2a (a.1), start to diffuse in to the rest of the
group at t = 30 and 80. Similar behavior was observed in S2
Fig. 2b (b.1) and S3 Fig. 2c (c.1) with the proposed method,
where agents with high resource levels from the ends and
center respectively, diffuse throughout the group at t = 30,
80 and t = 20, 60. With high resource level agents placed
throughout the group, the resource distribution following (2)
reaches the group mean resource level equilibrium bm =
36.29, 40.72, 29.83 at t = 236, 228 and 223 time steps for
S1, S2 and S3 respectively.
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Fig. 2: Time lapse comparison of scenarios (a) S1: Left-skewed, (b) S2: Bi-modal, (c) S3: Normal initial resource distributions
using the proposed AIS control law for resource distribution and their corresponding base methods for N = 100 agents.
Resource level of individual agents 0 < bi ≤ 100 represented as color bar on the right.
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(b) S1: Left-skewed - conver-
gence without AIS.

Fig. 3: S1: Left-skewed initial resource distribution - indi-
vidual agent resource level convergence vs. iteration time.
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(a) S2: Bi-modal - convergence
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(b) S2: Bi-modal - convergence
without AIS.

Fig. 4: S2: Bi-modal initial resource distribution - individual
agent resource level convergence vs. iteration time.

In contrast, using the base method in each of the scenarios
S1 Fig. 2a (a.2), S2 Fig. 2b (b.2) and S3 Fig. 2c (c.2)
respectively, all agents rendezvous to a minimal potential
state at inter-distance de regardless of each other’s resource
level. In S1 Fig. 2a (a.2), due to the left-skewed initial
resource distribution, agents with higher resource levels
clump together on the right. Similarly, agents with higher
resource levels clump together on the ends for a bi-modal
and center for a normal initial distribution in S2 Fig. 2b (b.2)
and S3 Fig. 2c (c.2) respectively. At t = 236, 228 and 223
for S1, S2 and S3, while the system has already reached the
group mean resource level equilibrium using AIS, the base
case was yet to reach equilibrium as seen from the simulation
time step in each of the scenarios. The adaptive placement of
high resource bearing agents throughout the group using AIS
ensured fast and efficient resource equilibrium attainment
over the base method.

The convergence of resource levels of each agent to the
group mean resource level for each of the described scenarios
S1, S2 and S3 using the proposed AIS controller and the base
method approaches are illustrated in Fig. 3, 4 and 5 respec-
tively. The system converges to the mean group resource
level at t = 524, 396 and 288 without using AIS for each
of the S1, S2 and S3 scenarios. Therefore, 55%, 42% and
23% performance improvements in equilibrium attainment
convergence time were obtained using the proposed AIS
controller over the base method in S1, S2 and S3 respectively.

The experiment was repeated for S4 with a random initial
resource distribution 5≤ b≤ 100 for all agents. The system
converged to bm = 57.57 at t = 159 using AIS and at t = 237
without using AIS, showing 33% performance improvement
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Fig. 5: S3: Normal initial resource distribution - individual
agent resource level convergence vs. iteration time.
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Fig. 6: S4: Random initial resource distribution - individual
agent resource level convergence vs. iteration time.

in equilibrium attainment time over the base method, proving
the effectiveness of the formulated di j function in efficient
resource distribution in a group. Fig 6 shows the resource
level convergence of each agent to bm using the proposed
and base methods for S4.

C. Discussion - Robustness & Scalability

The significance of the proposed method in this paper is
that it adaptively distributes agents with higher individual
resource levels throughout the entire group regardless of
initial group resource distribution. The process is continuous
over time and thus the adapting inter-distance is always main-
tained throughout the group based on inter-agent resource
levels at all time instances until equilibrium.

1) Observation 1: The AIS based resource distribution
method out-performed the base method in all scenarios S1,
S2, S3 and S4 for N = 100 agents. Therefore, we conclude
that the proposed resource distribution method is robust to
extreme initial group resource distributions.

2) Observation 2: At any given time, each individual clas-
sifies itself and others as either having resource level above
or below the group mean to determine di j; i.e. the proposed
method performs independent of the number of agents in
the entire group at any given time. Hence, AIS resource
distribution is robust to dynamic changes in the number of
agents in the group during the resource distribution process
assuming no agent is incapacitated or faulty.

Observation 2 also supports scalability of the proposed
method. To further investigate, we demonstrate the scalability
by repeating scenarios S1, S2, S3 and S4 for N = 3, 5, 10 and
then with increments of 10 up to N = 500, and plotting the
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Fig. 7: System resource convergence time to bm with and without using AIS with increasing N for S1, S2, S3, and S4.

time steps required for the system to reach the resource equi-
librium for each case. For each N in the scalability plots, we
consider the average time step of 5 simulation runs. Figure 7
shows the experiment results obtained with and without the
proposed AIS controller. The proposed AIS based resource
distribution method consistently yielded shorter convergence
times for increasing N. The most effective difference is seen
in initially skewed resource distributions and the closest dif-
ference is seen with the random initial resource distribution.

In two dimensional euclidean space, the highest density
lattice arrangement of circles is the hexagonal packing [16].
In most cases for N ≤ 6, the base method of without using
AIS performed better since all robots converged together into
a small enough group for fast resource distribution; whereas
with AIS, larger inter-distances between robots meant larger
traveling times until resource equilibrium attainment. There-
fore, we conclude that the proposed AIS resource distribution
method is effective for N > 6.

The scalability plots with increasing N show a diminishing
convergence time for small N and then gradually reaches a
steady state. This is a consequence of using artificial potential
functions to model the dynamics of the system. With larger
N, a larger amount of resource transfer occurs resulting
in longer convergence times. However, the total potential
energy of the system is higher as well, with each agent
experiencing larger attraction and repulsion forces resulting
in faster movements in the environment. This contributes
to smaller convergence times. As a result of cancelling
effects of the two phenomenons, a steady convergence time
is observed in all scenarios shown in Fig. 7 regardless of N.

A video of the simulations is available for reference at
https://youtu.be/xDd-S5ZRPG4.

V. CONCLUSION

In this paper, an adaptive inter-agent spacing control law
based on resource levels of robot pairs is proposed as an
efficient self-organization process for resource distribution in
multi-agent systems. Experimental results validate improved
resource distribution performance with AIS for any initial
resource distribution cases.

The improved performance by the proposed AIS controller
complements self-sustainability of various multi-agent sys-
tems on autonomous missions such as search and rescue,
surveillance, monitoring etc. The current system assumes that
agents are aware of the position and velocity of all other

agents in the group, which might not be applicable in a real
life scenario. Further work on adapting the AIS controller
for a decentralized approach is currently underway.

REFERENCES

[1] D. Portugal and R. Rocha, “Msp algorithm: multi-robot patrolling
based on territory allocation using balanced graph partitioning,” in
Proceedings of the 2010 ACM symposium on applied computing.
ACM, 2010, pp. 1271–1276.

[2] W. Sheng, Q. Yang, J. Tan, and N. Xi, “Distributed multi-robot
coordination in area exploration,” Robotics and Autonomous Systems,
vol. 54, no. 12, pp. 945–955, 2006.

[3] C. Luo, A. P. Espinosa, D. Pranantha, and A. De Gloria, “Multi-robot
search and rescue team,” in 2011 IEEE International Symposium on
Safety, Security, and Rescue Robotics. IEEE, 2011, pp. 296–301.

[4] D.-H. Lee, “Resource-based task allocation for multi-robot systems,”
Robotics and Autonomous Systems, vol. 103, pp. 151–161, 2018.

[5] X. He, Z. Wang, and D. Zhou, “Robust fault detection for networked
systems with communication delay and data missing,” Automatica,
vol. 45, no. 11, pp. 2634–2639, 2009.

[6] R. Humza, O. Scholz, M. Mokhtar, J. Timmis, and A. Tyrrell,
“Towards energy homeostasis in an autonomous self-reconfigurable
modular robotic organism,” in 2009 Computation World: Future Com-
puting, Service Computation, Cognitive, Adaptive, Content, Patterns.
IEEE, 2009, pp. 21–26.

[7] A. Krishnamurthy, D. Roy, and S. Bhat, “Analytical models for
estimating waiting times at a disaster relief center,” in Humanitarian
and Relief Logistics. Springer, 2013, pp. 21–41.

[8] Y. M. Lee, S. Ghosh, and M. Ettl, “Simulating distribution of
emergency relief supplies for disaster response operations,” in Winter
simulation conference. Winter Simulation Conference, 2009, pp.
2797–2808.

[9] T. D. Ngo, H. Raposo, and H. Schioler, “Potentially distributable en-
ergy: Towards energy autonomy in large population of mobile robots,”
in 2007 International Symposium on Computational Intelligence in
Robotics and Automation. IEEE, 2007, pp. 206–211.

[10] T. Mina and B.-C. Min, “Penguin huddling-inspired energy sharing
and formation movement in multi-robot systems,” in 2018 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR). IEEE, 2018, pp. 1–8.

[11] P. Zebrowsk and R. T. Vaughan, “Recharging robot teams: A tanker
approach,” in ICAR’05. Proceedings., 12th International Conference
on Advanced Robotics, 2005. IEEE, 2005, pp. 803–810.

[12] M. W. Horner and J. A. Downs, “Optimizing hurricane disaster relief
goods distribution: model development and application with respect to
planning strategies,” Disasters, vol. 34, no. 3, pp. 821–844, 2010.

[13] E. Luis, I. S. Dolinskaya, and K. R. Smilowitz, “Disaster relief routing:
Integrating research and practice,” Socio-economic planning sciences,
vol. 46, no. 1, pp. 88–97, 2012.

[14] V. G. Santos, L. C. Pimenta, and L. Chaimowicz, “Segregation of
multiple heterogeneous units in a robotic swarm,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 1112–1117.

[15] M. Kumar, D. P. Garg, and V. Kumar, “Segregation of heterogeneous
units in a swarm of robotic agents,” IEEE transactions on automatic
control, vol. 55, no. 3, pp. 743–748, 2010.

[16] L. Fukshansky, “Revisiting the hexagonal lattice: on optimal lattice
circle packing,” arXiv preprint arXiv:0911.4106, 2009.


