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Abstract—Motion planning of multiple unmanned surface ve-
hicles (USVs) towards increased autonomy and wider coverage of
the maritime environment is a pertinent requirement. Given the
numerous types of USVs currently available with a wide spectrum
of maneuvering capabilities, we present a generalized multi-USV
navigation framework adaptable to specific USV maneuvering
response capabilities for dynamic obstacle avoidance. The present
paper integrates an optimal path planning with safety distance
constrained A* algorithm and a proposed adaptively weighted
potential field based path following approach with collision
avoidance based on USV maneuvering response times. The system
allows USVs with fast maneuvering abilities to react late and slow
USVs to react sooner to oncoming moving obstacles gradually
such that a smooth path is followed by the USV group with
reduced cross track error. Simulation results validate reduced
cross track error for slow and fast maneuvering response time
multi-USV teams.

Keywords—Multi-Vehicle Systems, Path Planning, Unmanned
Surface Vehicles, Weighted Potential Function

I. INTRODUCTION

With increasing demand of autonomous systems in maritime
environment, the application of Unmanned Surface Vehicles
(USVs) has gained a lot of momentum in the last few decades.
High performance marine vehicles operating in maritime
environment are employed in various applications such as
bathymetric surveys, ocean monitoring, and data acquisition
[1], [2].

Substantial research has been conducted towards increasing
the intelligence of USVs with autonomous ships being the
basis of the research motivation [3]. Recent works have
focused on moving multiple USVs as a team to improve the
overall performance in terms of safety and implementation.
As such, we stress two important areas of research on multi-
USV systems; self-organization including formation control,
and path planning and path following with obstacle avoidance
in marine environments.

As representative works on multi-USV self-organization
and formation control, we highlight behavior-based multi-
agent interactions proposed in [4], [5], leader-follower ap-
proaches studied in [6], [7], and bio-inspired self-organization
approaches for multi-agent systems in [8], [9]. An overview
of the research work on the topic can be found summarized in
[10], [11], [12], [13]. Recent works on path planning and real-
time obstacle avoidance using Convention on the International
Regulations for Preventing Collisions (COLREGS) without
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Figure 1: Conceptual illustration of the double layered
weighted potential function framework for multi-USV naviga-
tion based on USV maneuvering capabilities to reduce cross
track error. Layer 1 generates a path from a given map and
layer 2 implements path following with adaptively weighted
collision avoidance and inter-USV dynamics.

relying on LiDAR or other sensors have been proposed in
[14]. Wang et al. proposed a hybrid approach combining A*
algorithm path planning with Dynamic Window for obstacle
detection and avoidance in the maritime environment. Recent
studies on multi-USV path planning also include methods
developed from bee colony dynamics [15] and computation
time improvements using fast marching algorithms [16].

Artificial potential based approaches have been a popular
choice for multi-agent self-organization, path following and
obstacle avoidance [17]. An improved artificial potential field
method specifically for USV obstacle avoidance have been
recently proposed in [18]. An application specific research
work on cooperative searching applications using multi-USV
systems was presented in [19]. A USV navigation method us-
ing path planning with A* algorithm and collision probability



distribution modeled by artificial potential fields was proposed
in [20].

Although a lot of multi-USV path planning and obsta-
cle avoidance research has been proposed in literature, very
few has addressed applicability concerns of their proposed
method on the wide variety of USVs currently available.
USVs generally used by the military on surveillance and
patrolling applications have high speed capabilities while
USVs used for surveys, measurement or water monitoring
tasks operate at slower speeds [21], [22]. USV shapes such
as the Catamaran type include the Springer [23], [24], MIT’s
AutoCat [25] and Charlie [26]. Kayak type USVs have also
been developed at MIT for autonomous surface missions [27].
Low cost small USVs have also been developed for specific
purposes as presented in [28]. Most of the path following and
obstacle avoidance methods proposed in literature are built
on assumptions of specific capabilities of the modeled USVs,
and fall short in generalizing their methods to these diverse
shapes, weights, sizes, propulsion methods of USVs resulting
in different maneuvering capabilities.

Therefore, in this paper we propose a novel generalized
multi-USV navigation framework adaptable for different types
of USV platforms. A constrained A* algorithm is used to
define an optimal path with safety distance considerations from
static obstacles in the environment. An adaptive weighting
model based on a generalized USV maneuvering response time
unit is presented that configures artificial potential terms in
the system framework governing inter-USV, USV with moving
obstacle and way point following interactions of attraction and
repulsion, and adapts the framework to the USV maneuvering
capabilities to allow improved path following performance for
navigation in terms of reduced cross track error.

II. PROBLEM STATEMENT

We consider a fully connected leader-follower group of n
USVs on a planar surface W , each denoted as Ri, for i ∈ IR =
{1,2, ..,n} with position and orientation defined as ri = [xi,yi]
and θi. Dynamics of each USV is modeled as an unicycle
model,

ẋi = vi cosθi

ẏi = vi sinθi

v̇i = ai

θ̇i = ωi
(1)

where vi and θ̇i the linear and angular velocity of Ri. The
control inputs of Ri are defined as [ui,wi], where ui = ai and
wi = ωi. Referring to previous works on radar and LiDAR
based obstacle detection for USVs [29], [30], we assume that
all USVs have a circular field of view (FOV) of radius d
centered at (xi,yi) for simplicity, within which it is able to
detect moving and static obstacles. The group leader is denoted
as Rh, where h ∈ IR.

Given the wide variety of USVs currently available in the
field, we consider a generalized maneuvering response time
unit for Ri as tr dependent on its size, weight, maximum
speed, braking and various other factors for dynamic obstacle
avoidance. We denote moving obstacles in W as Mi, for

Circular Safety Area 
around USV

Static 
Obstacle

ds = Safety distance of USV 
from obstacle

Path planned by conventional A* method 
Path planned by constrained A* method considering safety distance

Start

Goal

Figure 2: Schematic of the path generated from the path
planner in Layer 1 (left) in [31] and the generated path on
the map of Monterey Bay harbor (right).

i ∈ IM = {1,2, ..,Pm} with position mi and stationary obstacles
on the plane as Oi, for i ∈ IO = {1,2, ..,Po} with position oi.

The objective is for all n USVs to safely navigate through
a given environment following an optimally generated path,
aggregating and avoiding moving obstacles using our proposed
adaptively weighted potential function framework based on
USV maneuvering response time tr for reducing cross track
error.

III. PROPOSED SOLUTION

The proposed generalized multi-USV navigation framework
with dynamic obstacle avoidance in a constrained environment
consists of two layers. On the top level of the hierarchy (layer
1), a robust path planner based on constrained A* approach
[31] is adopted to generate optimal way points, which are
used to generate reference heading for guidance using the
line-of-sight (LOS) method. The reference heading is fed
into the lower hierarchy (layer 2) of online path following
based on a proposed adaptively weighted artificial potential
function framework for USV interaction, obstacle avoidance
and navigation. The novelty of the study lies in this level where
the potential function terms of inter-USV interaction, way
point attraction and moving obstacle avoidance are adaptively
weighted based on USV maneuvering response times to reduce
cross track error during dynamic collision avoidance, while
navigating in an environment with moving vessels. Fig. 1
shows the schematic of the double layered hybrid framework
for the multi-USV system.

A. Constrained A* offline Path Planning

In this study, a computationally efficient constrained A*
approach has been adopted towards offline path planning
for the multi-USV group from [31] to form layer 1 of the
proposed multi-USV framework. In this layer, a safety distance
constrained A* approach, where the USV is enclosed by a
certain safety distance ds, is applied to determine the way
points for navigation. The adopted A* approach in this study
considers a circle enclosing the USV as safety distance, as
shown in Fig. 2 (left). We denote the way points generated



by the proposed approach as wi, for i ∈ IW = {1,2, ..,Pw} in
order.

B. Online Path Following with Dynamic Obstacle Avoidance

1) Weighted potential functions: We define a set of artificial
potential functions to model a leader-follower based multi-
USV system interacting with its environment,

U
r j
ri (ri,r j) =

1
2

η11

(
ln ||ri− r j||+

di j

||ri− r j||

)
+

1
2

η12(||ri− r j||−di j)
2, i, j ∈ IR (2)

Uwp
rh (rh,wp) =

1
2

η2||rh−wp||2, h ∈ IR, p ∈ IW (3)

Umk
ri

(ri,mk) =
1
2

η3 (||ri−mk||−d)2 , i ∈ IR,k ∈ IM (4)

Uol
ri
(ri,ol) =

1
2

η4

(
1

||ri−ol ||
− 1

dio

)2

, i ∈ IR, l ∈ IO (5)

where η11, η12, η2, η3 and η4 are positive scaling constants
for their corresponding potential functions.

Artificial potential function U
r j
ri models inter-USV interac-

tion as a function of the relative distance between pairs of
USVs Ri and R j, with an equilibrium distance of di j. The
leader USV Rh is unaffected by the interaction of the follower
USVs in the group, while the follower USVs are affected by
the leader and all other USVs to form a leader-follower type
swarm aggregation model.

Each optimal way point wi, for i ∈ IW = {1,2, ..,Pw}
obtained from path planning on the top layer acts as an
intermediate goal point having an attractive potential. The
function Uwp

rh models the attraction of leader Rh towards the
next way point location wp on the path as a function of the
relative distance between rh and wp. This leads to traversing
of the multi-USV system towards a final goal point cutting
across intermediate way points.

We consider collision avoidance of USVs from moving
obstacles in the environment as a repulsive potential. The
potential function Umk

ri models the interaction of Ri with a
detected moving obstacle mk within radius d, as a function of
the relative distance between ri and mk for dynamic obstacle
avoidance.

The function Uol
ri models the repulsive interaction of Ri with

detected static obstacles ol with influence distance dio, as a
function of the relative distance between ri and ol . This ensures
collision avoidance with static objects (shoreline, anchored
vessels) in constrained channels of maritime environments. We
assume that at initial time,

∥∥ri− r j
∥∥,
∥∥rh−wp

∥∥, ‖ri−mk‖ and
‖ri−ol‖ are all non-zero terms.

We accommodate the applicability of our framework to
various types of multi-USV teams by proposing a weighting
scheme for the aforementioned set of potential functions based
on USVs having different maneuverability response times. We
consider a scenario where a multi-USV team following a tra-
jectory is on a collision course with a moving object detected
within d. For a multi-USV team capable of fast maneuvering
(fast response times), collision avoidance could be prioritized
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Figure 3: Adaptive weighting model based on moving obstacle
distance dm and USV maneuvering response time tr, for Kw =
0.25.

much later when the object is closer; the multi-USV team may
prioritize minimizing cross track error and maintaining inter-
USV distances until then. However, for a multi-USV team hav-
ing slow maneuvering capabilities, collision avoidance must
be prioritized sooner to allow enough time for maneuvering,
over minimizing cross track error and maintaining inter-USV
distances. Thus, we model the weighted potential function of
Ri as,

Uw(ri,r j,rh,wp,mk,ol) = (1−ws)

[
∑

j 6=i,i6=h
U

r j
ri +Uwp

rh

]
+ws ∑Umk

ri
+∑Uol

ri
(6)

where ws ∈ (0,1) is the weighting term dependant on USV
maneuvering capabilities quantified as maneuvering response
time tr. The resultant force on Ri is therefore,

Fi(ri,r j,rh,wp,mk,ol) = (1−ws)

[
∑

j 6=i,i6=h
OU

r j
ri +OUwp

rh

]
−ws ∑OUmk

ri
−∑OUol

ri
. (7)

The target orientation of Ri in the next time step is set
consistent with the direction of Fi and the magnitude of the
resultant control input denoted as ||Fi|| is utilized as the control
ui in Eq. (1).

2) Adaptive weighting model based on USV maneuverabil-
ity response times: An exponential based adaptive weighting
model is proposed to accommodate USVs with different
maneuverability response times tr in relation to distance to
the detected moving object dm = ‖ri−mk‖,

ws = e−
Kwdm

tr (8)

where Kw is a positive scaling constant for ws ∈ (0,1).
Figure 3 illustrates the resulting relationship of ws with

0 < dm(m) ≤ 100, 0 < tr(s) ≤ 10 and Kw = 0.25. For large
tr, a higher weighting ws is obtained over decreasing dm. In



contrast, for low tr cases, weighting ws remains relatively low
at higher dm but quickly increases at lower dm.

We justify our choice of an exponential based weighting
model to allow a slow change in ws for larger values of dm
at any particular tr. As dm gets smaller the rate of change in
ws gradually increases, until rapidly reaching its upper bound
infinitesimally close to distance dm of zero. We utilize these
characteristics of the exponential function to create a reduced
cross track error path following scheme for the USV group on
a collision course with a moving obstacle.

C. Controller Analysis
The artificial potential function based multi-USV system

proposed in this paper is based on the leader-follower type
swarm aggregation concept [32]. The elected group leader
is attracted to way points on the path sequentially, and is
unaffected by the following group’s inter-USV interactions;
whereas all followers are affected by the leader and all other
USVs on the group. The artificial potential function in Eq. (2)
describing the inter-USV interaction ensures the aggregation
of all USVs, keeping them in close proximity to each other.

We first analyze the convergence of the USVs to inter-USV
equilibrium distance di j without the leader USV being affected
by the followers, and no inter-USV collisions. To investigate
the stability and the convergence of the multi-USV system to
equilibrium inter-agent distance di j using the proposed control
law, we define the Lyapunov function as,

V (r,v) =U(r)+
1
2

vTv (9)

where r ∈ Rns and v ∈ Rns are stacked position and velocity
vectors of n robots in the system, and U(r) : Rns −→ R>0 is
the collective potential energy of the system written as,

U(r) =
n

∑
i=1,i6=h

n

∑
j 6=i

U
r j
ri (
∥∥ri− r j

∥∥). (10)

The collective dynamics of the multi-USV system is written
as,

ṙ = v, v̇ =−OU(r)− L̂(r)v (11)

where L̂(r) is the Kronecker product of the fully connected
multi-USV system’s graph Laplacian L(r) and identity matrix
Ip.

Proof. We differentiate V (r,v) and substitute Eq. (11):

V̇ (r,v) = ṙTOU(r)+ vT v̇

= vTOU(r)+ vT (−OU(r)− L̂(r)v)

=−vT L̂(r)v≤ 0. (12)

Therefore, using LaSalle’s Invariance Principle, we conclude
that velocities of all follower USVs will converge, i.e., ∀i 6=
h, j : vi = v j. With the total system energy bounded V (r,v)≤
C, the velocities are bounded as well ‖v‖ ≤

√
2C. Bounded

and matching velocities imply that inter-USV distances remain
constant, ∀i 6= h, j :

∥∥ri− r j
∥∥= 0. Hence,

U̇(r) =
n

∑
i=1,i 6=h

n

∑
j 6=i

(ṙi− ṙ j)
TOU

r j
ri (
∥∥ri− r j

∥∥) = 0 (13)

implying that U(r) is constant at steady state. Moreover, we
also conclude v̇ = −OU(r), since L̂(r)v = 0 due to matching
velocities. With OU(r) as zero, the system reaches a local
minimum with no change in USV velocities.

With initial conditions previously defined as
∥∥ri− r j

∥∥ 6= 0,
we also conclude that no inter-USV collision occurs in the sys-
tem, since

∥∥ri− r j
∥∥= 0 causes U(r)−→∞ which contradicts

V (r,v)≤C. �
The follower USV group’s centroid is defined as,

r̄ =
1

n−1

n−1

∑
i=1,i6=h

ri. (14)

The leader Rh is attracted to the next way point on the path
defined by the attractive artificial potential Uwp

rh (rh,wp) in Eq.
(3). This net movement of Rh creates an asymmetry in the
inter-USV interaction forces defined by the artificial potential
function U rh

ri (ri,rh), resulting in the motion of the USV group.
Lemma 3.1: A group of n−1 follower USVs and 1 leader

with dynamics defined as Eq. (1), and leader-follower and
follower-follower USV dynamics defined as Eq. (6), the fol-
lower USV group’s centroid dynamics are governed by the
leader USV’s attraction and repulsion,

˙̄r =− 1
n−1

n−1

∑
i=1,i 6=h

Frh
ri
(‖ri− rh‖)(ri− rh) (15)

where Frh
ri denotes the interaction force between Ri and Rh.

Proof. Substituting the USV dynamics and inter-USV con-
trol law from Eq. (7) in the derivative of the follower USV
group centroid expression in Eq. (14),

˙̄r =
1

n−1

n−1

∑
i=1,i6=h

ṙi

=− 1
n−1

n−1

∑
i=1,i6=h

n−1

∑
j=1, j 6=h

F
r j
ri (
∥∥ri− r j

∥∥)(ri− r j)

− 1
n−1

n−1

∑
i=1,i6=h

Frh
ri
(‖ri− rh‖)(ri− rh). (16)

Since F
r j
ri (
∥∥ri− r j

∥∥) = Fri
r j (
∥∥r j− ri

∥∥), we reorganize the sum-
mation limits to obtain,

1
n−1

n−1

∑
i=1,i 6=h

n−1

∑
j=1, j 6=h

F
r j
ri (
∥∥ri− r j

∥∥)(ri− r j)

=
1

n−1

n−2

∑
i=1,i 6=h

n−1

∑
j=i, j 6=h

[F
r j
ri (
∥∥ri− r j

∥∥)(ri− r j)

+Fri
r j
(
∥∥r j− ri

∥∥)(r j− ri)] = 0.

Therefore, the first term in Eq. (16) governing the follower-
follower USV attraction and repulsion equals 0, proving that
Eq. (15) holds true. �

The adaptive weighting model defines ws ∈ (0,1). Thus,
the inter-USV artificial potential based interaction term in Eq.
(6) weighted by 1−ws never goes to zero. The USVs are also
increasingly repelled by moving obstacles getting closer in the
distance interval [d,0), i.e. the artificial potential based moving



object repulsion term in Eq. (6) weighted by ws is never zero.
The USVs are also repelled by all static obstacles within d.
Therefore, the aforementioned proofs hold such that no inter-
USV collision occurs and all USVs in the system aggregate
to the defined leader USV Rh in finite time. Since the leader
Rh is attracted to the next way point on the path, we conclude
that all USVs in the group converge to consecutive way points
as well.

IV. VALIDATION AND RESULTS

A. Setup

To validate our proposed method, we show that groups of
n USVs having different maneuverability response times tr,
initially placed at a starting location of a given set of way
points in a constrained channel, navigates along the way points
successfully avoiding collision with moving objects in its path
while reducing cross track error.

Monterey Bay has significant geological and topological
importance, leading to the choice of the environment for the
current study. A 694×10,939 pixel binary map of Monterey
Bay with 1 pixel equivalent to 3.6m is used to generate a path
along the constrained channel. The constrained A* algorithm
used 72m as safety distance to generate the USV enclosing
circle, based on the International Maritime Organisation (IMO)
guidelines for collision avoidance in inland water ways. The
generated path is shown in Fig. 2 (right) with the identified
start and the goal points and is utilized as the set of way points
for the simulations.

We set up the validation process with n= 3 and n= 6 robots
having maneuverability response times of tr = 2 and tr = 8
in separate simulation scenarios. The maneuvering response
times are modeled by tuning the low level orientation and
speed controllers of each of the USVs to reflect the two tr
cases. A fast moving object is simulated approaching from
the opposite direction. For each scenario, we compare the
cross track error of the robot group following the path with
and without using our proposed adaptively weighted potential
function framework, to show that the resulting cross track error
is significantly less using our proposed framework.

For brevity of simulations, we exaggerate the maximum
allowed USV velocity to 7m/s and 5m/s in separate instances
and the constant velocity of the moving object approaching
from the opposite direction on a collision course as 8m/s.

B. Experiment and Results

Figure 5 illustrates the comparison of the artificial potential
function framework with and without adaptive weighting for
n = 3 USVs, maneuvering response time tr = 2. The time
lapse comparison of the path followed by the USV group
with and without the adaptive weighting framework as seen
in Fig. 5a visually demonstrates the effectiveness of the
adaptive weighting framework. The USV group having a fast
maneuvering response time of tr = 2 reacts much later to the
oncoming moving object after detection, and thus successfully
stays on its prescribed path with minor deviations with the
adaptive weighted framework; whereas the USV group without
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Figure 4: Adaptive weighting ws with time for n = 3 robots,
tr = 2 and tr = 8.

the framework drifts wide off course away from the oncom-
ing moving object regardless of having a fast maneuvering
response time.

In the unweighted case for maintaining inter-agent distance,
way point following and moving obstacle avoidance, all USVs
experienced strong repulsion from the moving obstacle with a
strong tendency to stay in formation. Thus, the USV with the
strongest repulsion from the moving obstacle strongly pulled
the entire USV team along with it to move further away from
the path. This phenomenon is observed as the large cross track
error as shown in Fig. 5b.

In comparison, the adaptive weighting system allowed loose
inter-USV interaction and way point following when near the
fast moving obstacle so that individual USVs could avoid the
moving obstacle without strongly influencing the team. The
adaptive weighting for the fast response time tr = 2 USV
system also weighed moving object avoidance less until much
closer to the object allowing USVs to stay on the path longer
even after detection of the moving object on the path as shown
in Fig. 5e. Thus, a smaller cross track error is observed with
the proposed adaptive weighting APF framework as seen in
Fig. 5b, while passing within a much smaller distance close
to the 72m safety distance previously set with the adaptively
weighted case while remaining. Fig. 5c shows the relevant plot
of USV-object inter-distance over the simulation period. Figure
4 shows the obtained ws profile with the adaptive weighting
framework, and the corresponding inter-USV interaction force
is shown in Fig. 5d. The magnitude of the inter-USV interac-
tion forces was smaller for the adaptively weighted framework
as expected with lower weighting when near a moving object,
compared to the unweighted framework.

The simulation with n = 3 USVs, is repeated with ma-
neuvering response time tr = 8 and the USV group path
following time lapse and resulting plots are shown in Fig.
6. Similar qualitative path following results to the tr = 2
scenario was obtained with the tr = 8 simulation case. The
USV group having a slow maneuvering response time of tr = 8
reacts relatively early to the oncoming object but gradually,
proportional to the slowly increasingly weight ws. The USV
group successfully stays close to its prescribed path with minor
deviations using the adaptive weighted framework; whereas
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Figure 5: Simulation result for n = 3 robots, tr = 2, on a
collision course with a moving obstacle showing reduced cross
track error with the adaptively weighted potential framework.
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(c) USV to moving object dis-
tance with time.
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(d) Inter-agent interaction force
with time.
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(e) Moving object and USV in-
teraction force with time.

Figure 6: Simulation result for n = 3 robots, tr = 8, on a
collision course with a moving obstacle showing reduced cross
track error with the adaptively weighted potential framework.



the USV group without the adaptive weighting framework
starts to maneuver wide off course rapidly as soon as a moving
object is detected in front. As a result, a large cross track error
is observed without using the proposed adaptive weighting
framework as seen in Fig. 6b. Here we also note that, due
to the slow maneuvering response time tr = 8, the cross track
error was smaller than the cross track error obtained for the
tr = 2 case. A consistent pattern in the USV distance to moving
object for tr = 8 with the tr = 2 case was obtained as shown
in Fig. 6c.

With a slow maneuvering response time, the proposed adap-
tive weighting framework gradually moved the USV group
away from the path of the moving object. This is evident from
Fig. 4 where a higher ws weight is reached for tr = 8 over a
longer period of time compared to tr = 2. The plot shown in
Fig. 6e verifies this finding that the interaction between the
USV group and the moving object spanned a longer period of
time and reached a higher peak for slow maneuvering response
time tr = 8, compared to the fast maneuvering case shown in
Fig. 5e adhering to the modeled ws function in Section III-B2.
Using the adaptive weighting potential framework, the USV
group remained much closer to the object and its defined path
but greater than the safe distance previously set, compared to
the unweighted case.

We repeat the maneuvering response time tr = 2 and tr = 8
simulation scenarios for n = 6 robots to present the effects
of larger n, acknowledging the fact that only a small number
of USVs may be appropriate in the group at once, due to
spatial and operational constraints in a narrow channel marine
environment.

The observations made for the n= 6 USV system were con-
sistent with the n = 3 USV case. With the proposed adaptively
weighted potential function framework, the fast maneuvering
response time case resulted in a low peak and short time
spanning ws profile and the slow maneuvering response time
case resulted a higher peak, and interaction spanning over a
longer period of time as shown in Fig. 7. The magnitude of
the inter-USV forces was smaller for the adaptively weighted
framework as expected with lower weighting when near a
moving object, compared to the unweighted framework in both
cases of tr = 2 and tr = 8 shown in Fig. 8d and Fig. 9d.

For this n = 6 robot case, the slow maneuvering USV group
with tr = 8 showed higher magnitude in inter-USV forces
even after interaction with the moving object has taken place.
From the time lapse image we see that Rh has moved ahead
much further leaving the follower USV group back due to
the lower cross track error of the group, and strong inter-
USV interactions within the follower USVs in the adaptively
weighted potential function framework. Due to the attractive
force of the follower USVs towards Rh, a higher magnitude
inter-USV plots are observed for the proposed system. The
ws profiles for the two maneuvering response time cases are
concordant with the USV and moving object interaction force
plots with time for the two cases shown in Fig. 8e and
Fig. 9e, showing a wider interaction region for the slower
response time system compared to the fast response time
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Figure 7: Adaptive weighting ws with time for n = 6 robots,
tr = 2 and tr = 8.

system. Both the cases exhibited a gradually growing slope
in contrast to the unweighted system that consistently showed
even larger USV and moving object interaction forces with
rapid growth and spanning over a wider period of time for
both the tr = 2 and tr = 8 cases respectively. As a result, the
performance comparison for a n = 6 USV group with and
without the proposed adaptively weighted potential function
framework, for both fast and slow maneuvering response
times exhibited significantly less cross tracking error with the
proposed adaptively weighted potential function framework
compared to the unweighted system in separate simulation
instances as seen in Fig. 8b and Fig. 9b. Similar to the n = 3
USV case, the USV group passed the moving object with the
minimum recorded distance just above the safety distance set
at 72m with the adaptively weighted case. In comparison, the
unweighted case resulted in the USV group following a much
wider path around the moving object for both cases of tr = 2
and tr = 8 as seen in Fig. 8c and Fig. 9c.

Potential function based systems operate relying on the
overall energy state of the system. The system tends to move
towards the closest minimum energy state termed as the
equilibrium condition. For increasing n, the total energy of the
system is higher and depending on the difference between the
initial system potential energy state and equilibrium state, the
rate at which the system tends to move towards equilibrium is
also higher. Therefore, the scaling parameters for the potential
functions must be tuned appropriately for significant changes
in n.

A video of the simulations is available for reference at http:
//smart-laboratory.org/docs/oceans19-wpf.mp4.

V. CONCLUSION

In this paper, a novel multi-USV navigation framework with
path planning and adaptively weighted potential functions for
dynamics obstacle avoidance with reduced cross track error
based on various maneuvering response time capabilities of
various USV systems is proposed. The system adaptively
weights inter-USV interactions, USV and moving object re-
pulsion, and leader attraction to the next way point to improve
path following performance of multi-USV teams on a collision
course with a moving object. The path followed to avoid
dynamic obstacles offer less drastic cornering for USVs using

http://smart-laboratory.org/docs/oceans19-wpf.mp4
http://smart-laboratory.org/docs/oceans19-wpf.mp4
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(b) Cross-track error comparison
with time.
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tance with time.
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with time.
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Figure 8: Simulation result for n = 6 robots, tr = 2, on a
collision course with a moving obstacle showing reduced cross
track error with the adaptively weighted potential framework.

the proposed method as it adaptively weights the potential
terms based on the moving object distance, in comparison
to the unweighted framework. Simulation results of 3 and 6
USV teams with one leader having fast and slow maneuvering
response times at separate instances validate reduced cross
track error with the proposed adaptively weighted framework
in comparison to an unweighted framework.

The significance of the proposed method in this paper is
its applicability on a wide variety of USVs with different
maneuvering abilities to improve dynamic obstacle avoidance
and path following performance without complex dynamical
model and control considerations for specific models of USVs.
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(a) Time lapse comparison for unweighted and adaptively weighted
potential function based path following and obstacle avoidance.
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(b) Cross-track error comparison
with time.
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(c) USV to moving object dis-
tance with time.
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(d) Inter-agent interaction force
with time.
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Figure 9: Simulation result for n = 6 robots, tr = 8, on a
collision course with a moving obstacle showing reduced cross
track error with the adaptively weighted potential framework.

This generalized approach was formulated based on simple
point mass dynamics and the process is continuous over time.
Further work on including environment conditions such as
sea surface and hydrodynamic effects, and moving object
path uncertainty and prediction into the adaptively weighted
potential function framework and along with experimental
implementation of the system is currently underway.
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