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Abstract 
Numerous types of Unmanned Surface Vehicles (USVs) are currently available for different 
applications with a wide spectrum of maneuvering capabilities. We present a generalized multi-
USV navigation, guidance and control framework adaptable to specific USV maneuvering 
response capabilities for dynamic obstacle avoidance. The proposed method integrates offline 
optimal path planning with a safety distance constrained A* algorithm, and an online Extended 
Adaptively Weighted (EAW) artificial potential field based path following approach with dynamic 
collision avoidance, based on USV maneuvering response times. The framework adaptively 
weighs inter-USV interaction, waypoint following, and collision avoidance based on USV 
maneuvering capabilities. The EAW system allows USVs with fast maneuvering abilities to react 
late and slow USVs to react sooner to oncoming moving obstacles gradually, with a carefully 
designed series of repulsive potential with diminishing weighting along the predicted path of 
detected moving obstacles, such that a smooth path is followed by the USV group with reduced 
cross-track error and reduced maneuvering effort. We emphasize the importance of such 
requirements in constrained and busy maritime environments such as narrow channels in busy 
harbors. Simulation results validate the proposed EAW artificial potential field framework for 
different sized multi-USV teams showing reduced cross-track error and maneuvering effort 
compared to the unweighted or traditional approach, for both slow and fast maneuvering multi-
USV teams. 

Keywords—multi-vehicle systems, unmanned surface vehicles, weighted potential function, 
navigation, guidance and control. 

1. Introduction

This paper is an extended version of the previous work presented in Mina et al., 2019. 
Autonomous multi-Unmanned Surface Vehicle (USV) systems have been a popular area 

of research in marine robotics over the past decade. USVs operating in the maritime environment 
are employed in various applications such as bathymetric surveys, water  monitoring, and data 
acquisition (Kimball et al., 2014; Fraga et al., 2014; Girdhar et al., 2011; Moulton et al., 2018), 
with numerous multi-USV applications including aquatic sensing, sampling, oil and pollution 
cleanup (Dolan et al.,2009; Abidin et al., 2010; Protei, 2011). The proficiencies required for USVs 
moving as a fleet or as a single entity to be considered autonomous can be grouped into three 
fields: navigation, guidance and control (NGC) (Stenersen, 2015). The area of navigation in USVs 
deals with approaches of path planning and obstacle avoidance (Singh et al., 2018; Karapetyan et 
al., 2019; Xie et al., 2019) while the area of guidance and control in USVs deal with approaches 
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of path following, collision avoidance and cooperative behaviors (Moulton et al., 2019; Manjanna 
et al., 2018; Karapetyan et al., 2019; Breivik and Fossen, 2004; Zhao et al., 2016). USV 
applications requiring navigating narrow waterways such as rivers, port or harbor areas (Mancini 
et al., 2015; Fraga et al., 2014; Dunbabin et al., 2017) require special care in designing NGC 
systems where dynamic obstacle avoidance is especially challenging while maintaining small 
cross-track errors from their prescribed paths.  
 

USVs are available in different sizes, shapes, speed constraints and with different 
maneuvering capabilities. Development of a generic NGC system for USVs is therefore a 
significantly challenging task. USVs generally used by the military on surveillance and patrolling 
applications have high speed capabilities (See, 2017), while USVs used for surveys, measurement 
or water monitoring tasks operate at slower speeds (Motwani, 2012; Thirunavukkarasu et al., 
2017). USVs with varying shapes include the Catamaran type Springer (Naeem et al., 2006), 
MIT’s AutoCat (Manley et al., 2000) and Charlie (Caccia et al., 2006); kayak type USVs 
developed at MIT (Goudey et. Al, 1998) and SCOUT (Curcio et al., 2005) and other low cost small 
USVs developed specific to different applications (Thirunavukkarasu et al., 2017; Jo et al., 2019). 
Relevant to heterogenous multi-USV control, CARACaS (Control Architecture for Robotic Agent 
Command and Sensing) was developed at the NASA Jet Propulsion Laboratory as an autonomy 
architecture for heterogenous multi-agent systems and provided foundational software 
infrastructure, core executive functions, and several default robotic technology modules (Wolf et 
al., 2017). Although a lot of multi-USV path planning and obstacle avoidance research has been 
proposed in literature, very few has addressed applicability concerns of their proposed method on 
the wide variety of USVs currently available. Previous research on the topic relevant to our current 
work is presented below.  

 
The advancements in electronic navigation equipment and sensor technology have led to 

the development of several path planning and obstacle avoidance approaches for USVs (Larson et 
al., 2006; Savvaris et al., 2014; Campbell et al., 2014). Several new control approaches have been 
adopted from the area of mobile robotics and extended to improve the autonomy of USVs as well 
(Caccia et al., 2008; Sharma et al., 2014; Cui et al., 2017). Most of these studies have been focused 
on a single USV to improve its overall efficiency in a maritime environment. With the increased 
requirement of high endurance, better temporospatial data and reduced cost in maritime missions, 
studies on multi-USV frameworks have gained a lot of momentum in the last decade (Kobilarov, 
2012; Liu and Bucknall, 2015; Liu and Bucknall, 2018). 
 

The current study associates with two important areas of research on multi-USV systems: 
self-organization including formation control; and collision avoidance including path planning and 
path following in marine environments. Formation control methods have been proposed as 
behavior-based interactions (Balch et al., 1998; Cao et al., 2003; Arrichiello et al., 2006), leader-
follower approaches (Peng et al., 2015), virtual structure (Do, 2012) and artificial potential 
functions (Huang et al., 2014). An overview of the recent research work on the topic of formation 
control in USVs can be found summarized in Chen and Wang, 2015; Guanghua et al., 2013 and 
Oh, 2017. Recent works on path planning and real-time obstacle avoidance using Convention on 
the International Regulations for Preventing Collisions (COLREGS) without relying on LiDAR or 
other sensors have been proposed in Beser et al., 2018. Wang et al., 2018 proposed a hybrid 
approach combining A* algorithm path planning with Dynamic Window for obstacle detection 
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and avoidance in the maritime environment. Several other methods such as Virtual Target (Bibuli 
et al., 2018), Bee Colony Dynamics (Oh et al., 2017) and Fast Marching (Liu and Bucknall, 2015) 
have also been adopted for multi-USV organization and collision avoidance in recent years.   
 

Artificial potential based approaches have been a popular choice for multi-agent self-
organization, path following and obstacle avoidance (Manzini, 2017). An improved artificial 
potential field method has been proposed specifically for USV obstacle avoidance (Xie et al., 
2014). An application specific research work was also presented on cooperative searching 
applications using multi-USV systems (Lin and Liu, 2018). USV navigation method using path 
planning was proposed with A* algorithm and collision probability distribution modeled by 
artificial potential fields in Chao et al., 2017; other notable works on collision avoidance based on 
probabilistic models include Lu et al., 2016.  
 

Most of the path following and obstacle  avoidance  methods  proposed  in  literature  are  
built on assumptions of specific capabilities of the modeled USVs, and  fall  short  in  generalizing  
their  methods  to  the  diverse shapes, weights, sizes, propulsion methods of USVs resulting in 
different maneuvering capabilities. In  our  previous  work,  we  presented a novel framework of 
constrained A* algorithm based offline path planning, and USV maneuvering response time based 
weighting model that adaptively weighs inter-USV, waypoint following and obstacle repulsion 
potential field terms for improved performance in path following in terms of reduced cross-track 
error (Mina et al., 2019). However, the system was only validated with simulations with the 
assumptions that moving obstacles followed straightforward paths. Therefore, in this paper, in 
addition to the offline path planning and adaptively weighted inter-USV and waypoint following 
potential field terms, we propose an Extended Adaptive Weighting (EAW) model based on USV 
maneuvering response time capabilities, that configures USV and erratically behaving detected 
moving obstacle repulsion within a limited field-of-view (FOV) as a diminishing series of terms 
along its predicted path; the complete artificial potential field framework allows improved path 
following performance for guidance and control in terms of reduced cross-track error and required 
maneuvering effort for dynamic obstacle avoidance compared to the unweighted (traditional) 
model.   

 
2. Preliminaries and Problem Statement 

We consider a fully connected leader-follower group of 𝑛 USVs on a planar surface 𝒲, 
each denoted as 𝑅௜, for 𝑖 ∈ 𝐼ோ = {1,2, . . , 𝑛} with position and orientation defined as 𝑟௜ = [𝑥௜ , 𝑦௜] 
and θ௜. Dynamics of each USV is modeled as a unicycle model, 

𝑥ప̇ = 𝑣௜ cos θ௜ 

𝑦ప̇ = 𝑣௜ sin θ௜ 

𝑣ప̇ = 𝑎௜ 

�̇�௜ = ω௜ 
(1) 

where 𝑣௜ and θప̇ the linear and angular velocity of 𝑅௜. The control inputs of 𝑅௜ are defined as 
[𝑢௜ , 𝑤௜], where 𝑢௜ = 𝑎௜ and 𝑤௜ = ω௜. Referring to previous works on radar and LiDAR based 
obstacle detection for USVs (Almeida, 2009; Halterman, 2010), we assume that all USVs have a 
circular field of view (FOV) of radius 𝑑 centered at (𝑥௜ , 𝑦௜) for simplicity, within which it is able 
to detect moving and static obstacles. The group leader is denoted as 𝑅௛, where ℎ ∈ 𝐼ோ. 
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Figure 1: Conceptual illustration of the double layered extended adaptively weighted potential field framework for 
multi-USV navigation, guidance and control based on USV maneuvering capabilities to reduce cross-track error and 
maneuvering effort. Layer 1 generates a path from a given map and layer 2 implements path following with extended 
adaptively weighted collision avoidance and inter-USV dynamics. 

Given the wide variety of USVs currently available in the field, we consider a generalized 
maneuvering response time unit for 𝑅௜ as 𝑡௥ dependent on its size, weight, maximum speed, 
braking and various other factors for dynamic obstacle avoidance. For simplicity, we model the 
effects of 𝑡௥ on a USV in this paper by limiting the maximum translational acceleration and the 
maximum turning rate of the USV denoted as 𝑎௠௔௫ and 𝜔௠௔௫. We denote moving obstacles in 𝒲 
as 𝑀௜, for 𝑖 ∈ 𝐼ெ = {1,2, . . , 𝑃௠} with position 𝑚௜ and stationary obstacles on the plane as 𝑂௜, for 
𝑖 ∈ 𝐼ை = {1,2, . . , 𝑃௢} with position 𝑜௜. The maneuvering ability of detected moving obstacles are 
assumed to be unknown.  

The objective is for all 𝑛 USVs to safely navigate through a given environment following 
an optimally generated path, aggregating and avoiding moving obstacles using our proposed 
extended adaptively weighted potential function framework based on USV maneuvering response 
time 𝑡௥ for reduced cross track error and maneuvering effort.  

3. Proposed Solution 
 
The proposed generalized multi-USV navigation, guidance and control framework with 

dynamic obstacle avoidance in a constrained environment consists of two layers. On the top level 
of the hierarchy (layer 1), an offline robust path planner based on the constrained A* approach 
(Singh et al., 2018) is adopted to generate optimal way points, which are used to generate reference 
heading for guidance using the line-of-sight (LOS) method. The reference heading is fed into the 
lower hierarchy (layer 2) of online path following based on a proposed EAW artificial potential 
function framework for USV interaction, a diminishing series based dynamic obstacle avoidance 
along the predicted path of detected moving obstacles, and waypoint following. The novelty of the  
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Figure 2: Schematic of the path generated from the path planner in Layer 1 (left) in (Singh et al., 2018) and the 
generated path along a narrow channel in the Port of Los Angeles harbor area (right). 
 
study lies in this level where the potential function terms of inter-USV interaction, way point 
attraction and moving obstacle avoidance are adaptively weighted based on USV maneuvering 
response times to reduce cross track error and maneuvering effort during dynamic collision 
avoidance, while navigating in an environment with moving vessels. Figure 1 shows the schematic 
of the double layered EAW framework for the multi-USV system.  
 
3.1 Layer 1: Constrained A* Path Planning 

In this study, a computationally efficient constrained A* approach has been adopted 
towards offline path planning for the multi-USV group to form layer 1 of the proposed multi-USV 
framework (Singh et al., 2018). In this layer, a safety distance constrained A* approach, where the 
USV is enclosed by a certain safety distance 𝑑௦ is applied to determine the way points for 
navigation. The adopted A* approach in this study considers a circle enclosing the USV as safety 
distance, as shown in Figure 2 (left). We denote the way points generated by the proposed approach 
as 𝑤௜, for 𝑖 ∈ 𝐼ௐ = {1,2, . . , 𝑃௪} in order. 
 
3.2 Layer 2: Online Path Following with Dynamic Obstacle Avoidance 
1) Adaptive weighting model based on USV maneuverability response times 

An exponential based adaptive weighting model is proposed to accommodate USVs with 
different maneuverability response times 𝑡௥ in relation to distance to the detected moving object 
𝑑௠, 

𝑤௦ = 𝑒
ି

௄ೢௗ೘
௧ೝ  (2) 

where 𝐾௪ is a positive scaling constant for 𝑤௦ ∈ (0,1). 

Figure 3 illustrates the resulting relationship of 𝑤௦ with 0 <  𝑑௠(𝑚)  ≤  100, 0 < 𝑡௥(𝑠) ≤ 10 
and 𝐾௪ = 0.2. For large 𝑡௥, a higher weighting 𝑤௦ is obtained over decreasing 𝑑௠. In contrast, for 
low 𝑡௥ cases, weighting 𝑤௦ remains relatively low at higher 𝑑௠ but quickly increases at lower 𝑑௠. 
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We justify our choice of an exponential based 
weighting model to allow a slow change in 𝑤௦ 
for larger values of 𝑑௠ at any particular t୰. As 
𝑑௠ gets smaller the rate of change in 𝑤௦ 
gradually increases, until rapidly reaching its 
upper bound infinitesimally, close to distance 
𝑑௠ of zero. We utilize these characteristics of 
the exponential function to create a reduced 
cross-track error path following scheme, 
requiring less maneuvering effort for the USV 
group on a collision course with an erratically 
behaving moving obstacle. 

 
 
2) Moving obstacle path prediction and repulsive potential term weightage 

The adaptive weighting model described in Section 3.2.1 assigns a weight of 𝑤௦ on moving 
obstacle repulsion for collision avoidance in accordance with a quantified maneuvering response 
time 𝑡௥ of individual USVs in the system. This adaptive weighting model is designed to provide 
reduced cross-track error by allowing fast maneuvering USVs to react late and slow maneuvering 
USVs to react early to a detected moving obstacle based on its individual ability.  
     

We propose path prediction and a diminishing repulsion model along the predicted path of a 
detected moving obstacle such that the path followed by the USV avoiding the moving obstacle: 

 requires reduced maneuvering effort 
 reduces cross-track error 
 is safer with prediction of erratic maneuvers of the moving obstacle. 

The improved system is termed as the EAW method. 
 

Once USVs detect a moving obstacle within its FOV of radius 𝑑, the recorded positions of 
the moving obstacle are used to extrapolate its path to determine its predicted path. We denote a 
repulsion radius 𝑑௥௘௣௘௟ < 𝑑 within which the moving obstacle is repelled. Moving obstacle 
positions detected within the region of 𝑑 − 𝑑௥௘௣௘௟ around the USVs are used as the initial training 
data for path extrapolation. For simplicity, a cubic spline extrapolation is utilized to a path distance 
of Δ𝑠 with higher degree polynomial extrapolations identified to result in overfitting, determined 
from several trial runs. We therefore deemed the cubic order of polynomial extrapolation as 
sufficient given limited maneuvering ability of bodies on water. Assuming a constant velocity of 
the moving obstacle within the detection FOV, 𝑍 equidistant points are extracted from the 
extrapolated path Δ𝑠, each of which hosts a repulsive potential for the USV system. The summation 
of the repulsive potential terms along the predicted path with 𝑍 potential terms can be written as, 
 

𝑈௥௘௣௘௟ = 𝑤௦ଵ𝑈ଵ + 𝑤௦ଶ𝑈ଶ + ⋯ + 𝑤௦௓𝑈௓ (3) 
 
where 𝑈ଵ, 𝑈ଶ, … , 𝑈௓ are repulsive potential terms, and  𝑤௦ଵ, 𝑤௦ଶ up to 𝑤௦௓ are weights for each of 
the 𝑍 potential terms. 
  

 
Figure 3: Adaptive weighting model based on moving 
obstacle distance 𝑑௠ and USV maneuvering response 
time 𝑡௥, for 𝐾௪ = 0.2. 
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We define the weights 𝑤௦ଵ, 𝑤௦ଶ up to 𝑤௦௓ as a diminishing series, such that 𝑤௦ଵ > 𝑤௦ଶ >
⋯ > 𝑤௦௓ assigned to each of the predicted path points along the extrapolated Δ𝑠 path, starting 
from the actual position of the detected moving obstacle with repulsive term 𝑈ଵ. Assuming a 
decreasing geometric series (common ratio, 𝑝 < 1) of weights, the sum of the weights must be 
equal to the adaptive weighting 𝑤௦, i.e. 
 

𝑎 ቆ
1 − 𝑝௓

1 − 𝑝
ቇ = 𝑤௦ (4) 

where 𝑎 is the first term of the series corresponding to the weight 𝑤௦ଵ of the repulsive potential of 
the detected actual position of the moving obstacle. We solve the underdetermined system for 𝑎 
and 𝑝, by choosing 𝑎, such that weight 𝑎 = 𝑤௦ଵ =

௪ೞ

ଶ
, waning with a common ratio of 𝑝 over the 

𝑍 extrapolated path points. It must be noted that 𝑎 must be large enough such that, the actual 
position of the moving obstacle is repelled strong enough to maintain a large enough safety 
distance.  
 
3) Weighted artificial potential function framework for guidance and control 

We define a set of artificial potential functions to model a leader-follower based multi-
USV system interacting with its environment, 

𝑈௥೔

௥ೕ൫𝑟௜ , 𝑟௝൯ =
1

2
ηଵଵ ቌln ቚห𝑟௜ − 𝑟௝หቚ +

𝑑௜௝

ቚห𝑟௜ − 𝑟௝หቚ
ቍ

+
1

2
ηଵଶ ቀቚห𝑟௜ − 𝑟௝หቚ − 𝑑௜௝ቁ

ଶ

, 

𝑖, 𝑗 ∈ 𝐼ோ (5) 

𝑈௥೓

௪೛
൫𝑟௛, 𝑤௣൯ =

1

2
ηଶ ቚห𝑟௛ − 𝑤௣หቚ

ଶ

, ℎ ∈ 𝐼ோ , 𝑝 ∈ 𝐼ௐ (6) 

𝑈௥೔

௠ೖ(𝑟௜ , 𝑚௞) = ෍
1

2

௓ାଵ

௭ୀଵ

𝑎𝑝௭ିଵ𝜂ଷ ቀ𝑑௥௘௣௘௟ − ቚห𝑟௜ − 𝑚௞,௭ିଵหቚቁ
ଶ

, 
0 < ቚห𝑟௜ − 𝑚௞,௭ିଵหቚ ≤ 𝑑௥௘௣௘௟ , 

𝑖 ∈ 𝐼ோ , 𝑘 ∈ 𝐼ெ 
 

(7) 

𝑈௥೔

௢೗(𝑟௜ , 𝑜௟) =
1

2
ηସ ቆ

1

ห|𝑟௜ − 𝑜௟|ห
−

1

𝑑௜௢
ቇ

ଶ

, 𝑖 ∈ 𝐼ோ , 𝑙 ∈ 𝐼ை (8) 

where ηଵଵ, ηଵଶ, ηଶ, ηଷ and ηସ are arbitrary positive scaling constants for their corresponding 
potential functions.  

Artificial potential function 𝑈௥೔

௥ೕ models inter-USV interaction as a function of the relative 

distance between pairs of USVs 𝑅௜ and 𝑅௝, with an equilibrium distance of 𝑑௜௝. The leader USV 
𝑅௛ is unaffected by the interaction of the follower USVs in the group, while the follower USVs 
are affected by the leader and all other USVs to form a leader-follower type swarm aggregation 
model. 

Each optimal way point w୧, for 𝑖 ∈ 𝐼ௐ = {1,2, . . , 𝑃௪} obtained from path planning on the 
top layer acts as an intermediate goal point having an attractive potential. The function 𝑈௥೓

௪೛  models 

the attraction of leader 𝑅௛ towards the next way point location 𝑤௣ on the path as a function of the 
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relative distance between 𝑟௛ and 𝑤௣. This leads to traversing of the multi-USV system towards a 
final goal point cutting across intermediate way points. 

We consider collision avoidance of USVs from moving obstacles in the environment as a 
repulsive potential. The potential function 𝑈௥೔

௠ೖ for the EAW method is derived from 𝑈௥௘௣௘௟ in Eq. 
(3) with the diminishing weighting terms written as a geometric progression 𝑎𝑝௭ିଵ, 𝑧 ∈
{1,2, . . , 𝑍}. It is the summation of the series of repulsive potential terms formed along the predicted 
path of a detected moving obstacle within radius 𝑑௥௘௣௘௟ < 𝑑, in contrast with the adaptively 
weighted (AW) method which does not consider path extrapolation; a single repulsive potential 
function is used with the full weighting of 𝑤௦. The first term in the proposed EAW method 
corresponds to a repulsive potential between 𝑟௜ and the actual position of the detected moving 
obstacle 𝑚௞ termed as 𝑚௞,௭ୀ଴, with the consecutive terms formed by the 𝑍 equidistant points along 
the predicted path of the moving obstacle denoted as 𝑚௞,௭வ଴ within radius 𝑑௥௘௣௘௟, dependent on 
the relative distance between 𝑟௜ and 𝑚௞,௭ for dynamic obstacle avoidance. The series of the 
summed potential terms along the predicted path are weighted by the designed diminishing 
weighting series described in Section 3.2.2 such that the sum of the weights equal 𝑤௦ obtained 
from Section 3.2.1.  

The function 𝑈௥೔

௢೗ models the repulsive interaction of 𝑅௜ with detected static obstacles 𝑜௟ 
with influence distance 𝑑௜௢, as a function of the relative distance between 𝑟௜ and 𝑜௟. This ensures 
collision avoidance with static objects (shoreline, anchored vessels) in constrained channels of 

maritime environments. We assume that at initial time, ቚห𝑟௜ − 𝑟௝หቚ, ቚห𝑟௛ − 𝑤௣หቚ, ห|𝑟௜ − 𝑚௞|ห and 

ห|𝑟௜ − 𝑜௟|ห are all non-zero terms. 

We accommodate the applicability of our framework to various types of multi-USV teams 
by proposing a weighting scheme for the aforementioned set of potential functions based on USVs 
having different maneuverability response times. We consider a scenario where a multi-USV team 
following a trajectory is on a collision course with a moving object detected within 𝑑. For a multi-
USV team capable of fast maneuvering (fast response times), collision avoidance could be 
prioritized much later when the object is closer; the multi-USV team may prioritize minimizing 
cross track error and maintaining inter-USV distances until then.  

However, for a multi-USV team having slow maneuvering capabilities, collision avoidance 
must be prioritized sooner to allow enough time for maneuvering, over minimizing cross-track 
error and maintaining inter-USV distances. Thus, we model the weighted potential function of 𝑅௜ 
as, 

𝑈௜൫𝑟௜ , 𝑟௝ , 𝑟௛, 𝑤௣, 𝑚௞ , 𝑜௟൯ = (1 − 𝑤௦) ቎ ෍ 𝑈௥೔

௥ೕ

௝ஷ௜,௜ஷ௛

+ 𝑈௥೓

௪೛
቏ + ෍ 𝑈௥೔

௠ೖ + ෍ 𝑈௥೔

௢೗ (9) 

where 𝑤௦ ∈ (0,1) is the weighting term dependant on USV maneuvering capabilities quantified as 
maneuvering response time 𝑡௥. The resultant force on 𝑅௜ is therefore, 
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𝐹௜൫𝑟௜ , 𝑟௝ , 𝑟௛, 𝑤௣, 𝑚௞ , 𝑜௟൯ = (1 − 𝑤௦) ቎ ෍ ∇

௝ஷ௜,௜ஷ௛

𝑈௥೔

௥ೕ + ∇𝑈௥೓

௪೛
቏ − ∑∇𝑈௥೔

௠ೖ − ∑∇𝑈௥೔

௢೗ . (10) 

 
The target orientation of 𝑅௜ in the next time step is set consistent with the direction of 𝐹௜ 

and the magnitude of the resultant control input  ห|𝐹௜|ห is utilized as the control 𝑢௜ in Eq. (1). 
 
3.3 Controller Analysis 

We first analyze the convergence of the USVs to inter-USV equilibrium distance 𝑑௜௝ 
without the leader USV being affected by the followers, and no inter-USV collisions. To 
investigate the stability and the convergence of the multi-USV system to equilibrium inter-agent 
distance 𝑑௜௝ using the proposed control law, we define the Lyapunov function as, 
 

𝑉(𝑟, 𝑣) = 𝑈(𝑟) +
1

2
𝑣T𝑣 (11) 

where 𝑟 ∈ 𝑅௡௦ and 𝑣 ∈ 𝑅௡௦ are stacked position and velocity vectors of 𝑛 robots in the system, 
and 𝑈(𝑟): 𝑅௡௦ ⟶ 𝑅வ𝟘 is the collective potential energy of the system written as, 

𝑈(𝑟) = ෍ ෍ 𝑈௥೔

௥ೕ൫ฮ𝑟௜ − 𝑟௝ฮ൯

௡

௝ஷ௜

௡

௜ୀଵ,௜ஷ௛

. (12) 

The collective dynamics of the multi-USV system is written as, 

�̇� = 𝑣 �̇� = −∇𝑈(𝑟) − 𝐿෠(𝑟)𝑣 (13) 

where 𝐿෠(𝑟) is the Kronecker product of the fully connected multi-USV system's graph Laplacian 
𝐿(𝑟) and identity matrix 𝐼௣. 

Proof.  We differentiate 𝑉(𝑟, 𝑣) and substitute Eq. (13): 

�̇�(𝑟, 𝑣) = �̇�்∇𝑈(𝑟) + 𝑣்�̇� 

= 𝑣்∇𝑈(𝑟) + 𝑣்൫−∇𝑈(𝑟) − 𝐿෠(𝑟)𝑣൯ 

= −𝑣்𝐿෠(𝑟)𝑣 ≤ 0. (14) 

With �̇� as negative semi-definite, we conclude the boundedness of 𝑣; we emphasize here 
the following two assumptions: (1) With the system being applied to a harbor setting, the multi-
USV team moves slow enough (with small changes in velocity per unit time), i.e. the potential 
function scaling parameters are tuned relative to one another to be as small as possible; and (2) the 
system has a sufficiently fast refresh cycle to prevent any discontinuity in the summed potential 
term in Eq. (9). Therefore, we determine the uniform continuity of �̇� by calculating �̈� =
−�̇�்𝐿෠(𝑟)�̇� − 𝑣்�̇�்∇𝐿෠(𝑟)�̇� − 𝑣்𝐿෠(𝑟)�̇� ≤ 0; i.e. �̇� ⟶ 0 as 𝑡 ⟶ ∞. Therefore, following 
application of Barbalat’s Lemma, we conclude that velocities of all follower USVs will converge, 
i.e., ∀𝑖 ≠ ℎ, 𝑗: 𝑣௜ = 𝑣௝ .  
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With the total system energy bounded 𝑉(𝑟, 𝑣) ≤ 𝐶, the velocities are bounded as well 
‖𝑣‖ ≤ √2𝐶. Bounded and matching velocities imply that inter-USV distances remain positive and 
constant, ∀𝑖 ≠ ℎ, 𝑗: ฮ𝑟ప̇ − 𝑟ఫ̇ฮ = 0. Hence, 

�̇�(𝑟) = ෍ ෍൫𝑟ప̇ − 𝑟ఫ̇൯
்

∇

௡

௝ஷ௜

𝑈௥೔

௥ೕ൫ฮ𝑟௜ − 𝑟௝ฮ൯

௡

௜ୀଵ,௜ஷ௛

= 0 (15) 

implying that 𝑈(𝑟) is constant at steady state. Moreover, we also conclude �̇� = −∇𝑈(𝑟), since 
𝐿෠(𝑟)𝑣 = 0 due to matching velocities. With ∇𝑈(𝑟) as zero, the system reaches a local minimum 
with no change in USV velocities.  

With initial conditions previously defined as ฮ𝑟௜ − 𝑟௝ฮ ≠ 0, we also conclude that no inter-
USV collision occurs in the system, since ฮ𝑟௜ − 𝑟௝ฮ = 0 causes 𝑈(𝑟) ⟶ ∞ which contradicts 
𝑉(𝑟, 𝑣) ≤ 𝐶. ■ 

The follower USV group's centroid is defined as, 

�̅� =
1

𝑛 − 1
෍ 𝑟௜

௡ିଵ

௜ୀଵ,௜ஷ௛

. (16) 

The leader 𝑅௛ is attracted to the next way point on the path defined by the attractive artificial 
potential 𝑈௥೓

௪೛
൫𝑟௛, 𝑤௣൯ in Eq. (6). This net movement of 𝑅௛ creates an asymmetry in the inter-USV 

interaction forces defined by the artificial potential function 𝑈௥೔

௥೓(𝑟௜ , 𝑟௛), resulting in the motion of 
the USV group.  

Lemma: A group of 𝑛 − 1 follower USVs and 1 leader with dynamics defined as Eq. (1), and 
leader-follower and follower-follower USV dynamics defined as Eq. (9), the follower USV group's 
centroid dynamics are governed by the leader USV's attraction and repulsion, 

�̇̅� = −
1

𝑛 − 1
෍ 𝐹௥೔

௥೓(‖𝑟௜ − 𝑟௛‖)(𝑟௜ − 𝑟௛)

௡ିଵ

௜ୀଵ,௜ஷ௛

 (17) 

where 𝐹௥೔

௥೓ denotes the interaction force between 𝑅௜ and 𝑅௛. 

Proof.  Substituting the USV dynamics and inter-USV control law from Eq. (10) in the derivative 
of the follower USV group centroid expression in Eq. (16), 

�̇̅� =
1

𝑛 − 1
෍ 𝑟ప̇

௡ିଵ

௜ୀଵ,௜ஷ௛

 
(18) 
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= −
1

𝑛 − 1
෍ ෍ 𝐹௥೔

௥ೕ൫ฮ𝑟௜ − 𝑟௝ฮ൯൫𝑟௜ − 𝑟௝൯

௡ିଵ

௝ୀଵ,௝ஷ௛

௡ିଵ

௜ୀଵ,௜ஷ௛

−
1

𝑛 − 1
෍ 𝐹௥೔

௥೓(‖𝑟௜ − 𝑟௛‖)(𝑟௜ − 𝑟௛)

௡ିଵ

௜ୀଵ,௜ஷ௛

. 

Since 𝐹௥೔

௥ೕ൫ฮ𝑟௜ − 𝑟௝ฮ൯ = 𝐹௥ೕ

௥೔൫ฮ𝑟௝ − 𝑟௜ฮ൯, we reorganize the summation limits to obtain, 

1

𝑛 − 1
෍ ෍ 𝐹௥೔

௥ೕ൫ฮ𝑟௜ − 𝑟௝ฮ൯൫𝑟௜ − 𝑟௝൯

௡ିଵ

௝ୀଵ,௝ஷ௛

௡ିଵ

௜ୀଵ,௜ஷ௛

 

=
1

𝑛 − 1
෍ ෍ ቂ𝐹௥೔

௥ೕ൫ฮ𝑟௜ − 𝑟௝ฮ൯൫𝑟௜ − 𝑟௝൯ + 𝐹௥ೕ

௥೔൫ฮ𝑟௝ − 𝑟௜ฮ൯൫𝑟௝ − 𝑟௜൯ቃ

௡ିଵ

௝ୀ௜,௝ஷ௛

௡ିଶ

௜ୀଵ,௜ஷ௛

= 0.  

  Therefore, the first term in Eq. (18) governing the follower-follower USV attraction and 
repulsion equals 0, proving that Eq. (17) holds true. ■ 

The adaptive weighting model defines 𝑤௦ ∈ (0,1). Thus, the inter-USV artificial potential 
based interaction term in Eq. (9) weighted by 1 − 𝑤௦ never goes to zero. The USVs are also 
increasingly repelled by moving obstacles getting closer in the distance interval [𝑑, 0), i.e. the 
artificial potential based moving object repulsion term in Eq. (9) weighted by 𝑤௦ is never zero. 
The USVs are also repelled by all static obstacles within 𝑑. Therefore, the aforementioned proofs 
hold such that no inter-USV collision occurs and all USVs in the system aggregate to the defined 
leader USV 𝑅௛ in finite time. Since the leader 𝑅௛ is attracted to the next way point on the path, we 
conclude that all USVs in the group converge to consecutive way points as well. 
 
4. Validation and Results 
 
4.1 Validation Setup 
 

To validate our proposed method, we show that teams of 𝑛 USVs with different 
maneuverability response times 𝑡௥ can successfully navigate along its waypoints in a constrained 
channel with: 

 reduced cross-track error and 
 reduced maneuvering effort 

compared to the unweighted and AW method in presence of an oncoming high-speed moving 
obstacle showing erratic behavior upon detection.  

 
The Port of Los Angeles is one of the busiest and well-known ports in the United States 

(The Port of Los Angeles); a narrow channel within the harbor area is therefore chosen for 
validation of our EAW artificial potential field framework. A 1,067×1,785 pixel binary map of the 
LA harbor area with 1 pixel equivalent to 3.6𝑚 is used to generate a path along the constrained 
channel. The constrained A* algorithm used 72𝑚 as safety distance to generate the USV enclosing  
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Figure 4: Experiment environment with a subset of the USV path from Layer 1 (blue) and modeled high-speed moving 
obstacle path (red) for dynamic obstacle avoidance validation. Area of study from the full map is shown in the subset 
image. 

safety circle, based on the International Maritime Organization (IMO) guidelines for collision 
avoidance in inland water ways. The generated path is shown in Fig. 2 (right) with the identified 
start and the goal points. For brevity of the simulations, we use a subset of the generated waypoints 
over a smaller region on the map to design our validation setup. The setup is shown in Fig. 4 with 
the identified USV team start and goal positions (blue path). We model an oncoming high-speed 
moving obstacle along the generated path of the USV team such that, once within detection range 
the moving obstacle makes a sudden turn crossing path with the USV team (erratic behavior) 
followed by returning to its original heading (red path). We also define a region λ in the 
environment (red oval region) to be used for robustness analysis of the proposed EAW method.  

We set up the validation process with a USV team of 𝑛 = 3 having maneuverability 
response times of 𝑡௥ = 6 and 𝑡௥ =  10 in separate simulation scenarios identified as scenario 1 
(S1) and scenario 2 (S2) respectively. The maneuvering response time 𝑡௥ depends on low-level 
orientation and speed controllers of each of the USVs. For validation purposes, we model 

maneuvering ability of individual USVs dependent on 𝑡௥ as 𝑎௠௔௫ =
ଶ଴

௧ೝ
 and ω௠௔௫ =

ଵ଴

௧ೝ
. For each 

scenario, we compare the paths taken by the USV team qualitatively with time lapse images, the 
cross-track error of the USV team following the path and the maneuvering effort by each USV to 
avoid collision in terms of repulsion from the moving object and change in orientation, for the 
unweighted, AW and the proposed EAW artificial potential field framework. For brevity of 
simulations, we exaggerate the maximum allowed USV velocity to 7𝑚/𝑠 and 5𝑚/𝑠 in S1 and S2 
respectively, and the constant velocity of the moving object approaching from the opposite 
direction on a collision course as 8𝑚/𝑠. The moving obstacle is assumed to have a much faster 
maneuvering ability of ω௠௔௫ = 1.4. A collision is considered if 𝑑௠ < 10𝑚 and 𝑑௥௘௣௘௟ is chosen 
to be 0.8𝑑 for all simulation cases.  
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4.2 Simulation Results 
1) Scenario S1 and S2 for a 3 USV system 

 

Figure 5: Observed 𝑤௦ in S1: 𝑡௥ = 6 and S2: 𝑡௥ = 10, for the 𝑛 = 3 USV system. 

Figure 6a, 6b and 6c illustrates the time lapse comparisons of the unweighted, AW and the 
proposed EAW methods for the S1: 𝑡௥ = 6 simulation scenario with 𝑛 = 3 USVs. The unweighted 
case time lapse shows the specific problem where the sudden change in the moving obstacles 
heading results in a potential failure of the framework. Upon detection of the moving obstacle 
slightly on the left of its path (𝑡 = 205𝑠), the USVs veer to the right as a result of the repulsion 
from the moving obstacle; with the sudden change in heading of the moving obstacle to its left, 
the USVs are repelled further to their right to avoid collision and comes dangerously close to the 
moving obstacle (𝑡 = 245𝑠) due to their limited maneuvering ability. The USV with the strongest 
repulsion from the moving obstacle strongly pulled the entire USV team along with it (Fig. 6e) to 
move further away from the path with a strong tendency to stay in formation. The actual path 
followed by the USV team for the unweighted case thus shows a large cross-track error as observed 
in Fig. 6a and Fig. 6d. 

In comparison, the AW artificial potential framework allowed the USVs to react later to 
the moving obstacle upon detection, in accordance with its relatively fast maneuvering ability. The 
adaptive weighting allowed loose inter-USV interaction (Fig. 6e) and way point following when 
near the fast-moving obstacle so that individual USVs could avoid the moving obstacle without 
strongly influencing the team (𝑡 = 230𝑠). The adaptive weighting also weighed moving object 
avoidance less until much closer to the object allowing USVs to stay on the path longer even after 
detection of the moving object on the path as shown in Fig. 6b (𝑡 = 198𝑠, 230𝑠). As a result, a 
significantly smaller cross-track error is observed in the USV path following as shown in Fig. 6d 
compared to the unweighted method. With the AW method, the USVs remain at a safe distance of 
over 50𝑚 from the moving obstacle, where the unweighted model brought the USVs within 15𝑚 
and dangerously close for collision as shown in Fig. 6h. 

Figure 6c visually demonstrates the effectiveness of the proposed EAW method in 
comparison to the already effective AW method. The moving obstacle predicted path points, 
repelled the USVs dependent on distance with a diminishing weight as described in Section 3.2.2 
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Figure 6: Simulation result for 𝑛 =  3 USVs, on a collision course with a moving obstacle showing reduced cross-
track error and maneuvering effort with the extended adaptively weighted potential framework for S1: 𝑡௥ = 6. 
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from the actual moving obstacle position to the leading edge of the predicted path (Fig 6c, 𝑡 =

198𝑠, 230𝑠). Thus, the USVs experienced a gradually increasing repulsive force getting closer to 
the moving obstacle within distance 𝑑௥௘௣௘௟. This is observed comparing Fig. 6b, 𝑡 = 230s and Fig. 
6c, 𝑡 = 230𝑠; the maneuvering is less drastic for the EAW method compared to AW. This resulted 
in a further reduced cross-track error from the AW artificial potential field framework as observed 
in Fig. 6d.  

The repulsive force experienced by the USVs from the moving obstacles for the 3 artificial 
potential field cases are shown in Fig. 6f. The unweighted artificial potential field method showed 
a large repulsive force over a larger duration compared to the rest as expected. The AW method 
showed much smaller repulsion in comparison to the unweighted and over a smaller duration. 
However, the proposed EAW method showed further reduced repulsive force per unit time over a 
much shorter duration due to the gradually increasing repulsive force experienced within distance 
𝑑௥௘௣௘௟. As a result, the maneuvering effort to avoid collision with the moving obstacle qualitatively 
compared as change in USV orientation in the USV orientation plot with time in Fig. 6g, showed 
the smallest required change in USV orientation for the proposed EAW artificial potential field 
framework in comparison to the rest. This suggested a much smoother actual USV path even in 
the presence of an erratically behaving mobile obstacle in the vicinity as observed in Fig. 6c.   

The simulation with 𝑛 = 3 USVs is repeated for the S2: 𝑡௥ = 10 scenario. The USV group 
path following time lapse and resulting plots are shown in Fig. 7. With a relatively slower 
maneuvering response time of 𝑡௥ = 10 the USVs were restricted by their movement capabilities 
and collided with the moving obstacle (𝑑௠ < 10𝑚) in the unweighted artificial potential field (𝑡 =

230𝑠) as seen in Fig. 7a (𝑡 = 220𝑠, 230𝑠). This is also when the repulsion force of USV 1 from 
the moving obstacle reaches its peak (Fig. 7f). The simulation was however allowed to proceed to 
observe the cross-track error which was recorded to be significantly high in comparison to the AW 
and EAW methods as expected (Fig. 7d).  

 For the AW method, the USV group having a slow maneuvering response time of 𝑡௥ =

10 reacted relatively early to the oncoming object but gradually, proportional to the slowly 
increasingly weight 𝑤௦. The adaptive weighting plot over time is shown in Fig. 5 for both the S1 
and S2 scenarios with the 𝑛 = 3 USV system. The USVs in S2 thus experience a higher magnitude 
of repulsive force over a wider time duration compared to S1 as seen in Fig. 7f and 6F. This 
remains true for both the AW and EAW methods. This is due to the adaptive weighting model 
assigning a higher weight 𝑤௦ and over a wider elapsed time in S2 compared to S1, because of the 
slower maneuvering response capability of the USV in S2. The proposed EAW method was also 
assigned a higher weight compared to its counterpart AW method respective of its scenario S1 and 
S2 as expected, as with smaller cross-track error EAW allowed the USVs to remain closer to the 
moving obstacle. The resulting repulsive force per unit time was experienced to be less for EAW 
compared to AW (Fig. 7f) due to the diminishing weight model over the predicted path as 
described in Section 3.2.2. 
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Figure 7: Simulation result for 𝑛 =  3 USVs, on a collision course with a moving obstacle showing reduced cross-
track error and maneuvering effort with the extended adaptively weighted potential framework for S2: 𝑡௥ = 10. 



17 
 

The results of S2: 𝑡௥ = 10 for the AW and EAW methods showed similar qualitative path 
following results to S1: 𝑡௥ = 6. AW allowed a cross-track error significantly less than the 
unweighted system while the proposed EAW method reduced it further as shown in Fig. 7d. The 
inter-USV forces were smaller allowing loose attraction to one another in S2 compared to S1 (Fig. 
Fig. 7e and 6e), due to the higher weighting 𝑤௦ (Fig. 5) during moving obstacle avoidance. The 
maneuvering repulsive force was much smaller for the EAW method compared to AW (Fig. 7f) 
which resulted in smaller USV orientation changes for moving obstacle avoidance (reduced 
maneuvering effort) with EAW as observed in Fig. 7g. This is evident by comparing Fig. 7b, 𝑡 =

230𝑠 and Fig. 7c, 𝑡 = 230𝑠 where the maneuvering is less drastic for the EAW method. Due to 
the slower maneuvering ability, the magnitude of USV orientation change during obstacle 
avoidance was recorded less for S2 compared to the S1 scenario as well (Fig. 6g and Fig 7g.) A 
much smoother actual USV path even in the presence of an erratically behaving mobile obstacle 
in the vicinity was thus observed in Fig. 7c similar to the S1 scenario. 

4.3 Discussion 
 

Following the validation scenarios presented, we conclude that the adaptive weighting by 
itself provided significant improvement in multi-USV obstacle avoidance according to USV 
maneuvering capabilities, while reducing cross-track error. The EAW method extended the 
applicability of the AW method for avoiding collisions with potentially erratically behaving 
moving obstacles, by utilizing detected moving obstacle path prediction and applying a 
diminishing repulsive potential along the predicted path based on a geometric series (common 
ratio, 𝑝 < 1) dependent on distance to the detected moving obstacle. 

  
The simulation scenarios with the maneuvering response time S1: 𝑡௥ = 6 and S2: 𝑡௥ = 10 

were repeated for 𝑛 =  6 robots to study the effects of larger 𝑛, acknowledging the fact that only 
a small number of USVs may be appropriate in the group at once, due to spatial and operational 
constraints in a narrow channel marine environment. The observations made for the 𝑛 = 6 USV 
system were consistent with the 𝑛 = 3 USV cases. Please refer to the Appendix section of this 
manuscript for time lapse, description and  relevant plots of the 6 USV system simulations. 

 
The simulation scenarios S1 and S2 were each repeated 20 times for 𝑛 = 3 and 𝑛 = 6 

USVs in separate instances with varying moving obstacle trajectories in each case to analyze the 
robustness of the proposed EAW method. An initial start position of the moving obstacle was 
randomly chosen from the region λ identified in Section 4.1 and the moving obstacle was allowed 
to travel along a straight line to the goal location 𝐺. Over the course of the 20 trials in each case, 
the cross-track errors remained under 40𝑚 with the minimum recorded as 22𝑚 for the proposed 
EAW method. Reduction in maneuvering effort for obstacle avoidance was recorded as percentage 
difference between the of the maximum change in USV orientation over the entire simulation 
duration for EAW and the unweighted method. The maximum reduction in maneuvering effort 
was recorded to be 83.4% while the minimum was recorded as 24.8%.  
 

The path prediction used for the proposed EAW method relies heavily on detected moving 
obstacle location, which in reality suffers from uncertainty. Machine learning techniques such as 
Gaussian Process Machine Learning (GPML) may provide better extrapolation of the moving 
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obstacle path with appropriate confidence intervals. The trade-off of using such sophisticated 
methods is processing time and required training data for implementation. Thus, a simple cubic 
spline extrapolation was used in the current study considering limited maneuverability of bodies 
in water with a path prediction update at every iteration. Implementation of more sophisticated 
path prediction algorithms may be considered as an independent module following a slower update 
cycle than the rest of the system but must sync and be sufficiently fast enough to update the 
repulsive potential functions in time for dynamic obstacle avoidance. We leave detailed analysis 
of performance evaluation relating to update cycle on real-world experimental validation currently 
set as future work of our proposed method.  

 
Any uncertainty in detected moving obstacle position is ignored with a choice of a large 

enough moving obstacle safety distance set as a sufficient condition. We also note relaxing the 
constant speed assumption of the moving obstacle within the detection radius of the USVs may 
provide better results; the identified equidistant 𝑍 repulsion points on the plane along the predicted 
path could be spaced for a constant time unit in accordance with the estimated moving obstacle 
speed. However, for our current work we assume that the detection radius of the USVs are small 
enough to not provide any significant improvements over the current constant speed assumption; 
it would only add to the complexity of the proposed system. 
 

In reality, autonomous multi-USV teams must also consider environmental effects such as 
wind, current and wakes of ships in busy harbors in the navigation control process. We assume 
that the proposed framework would be used as a high-level controller taking into account 
maneuvering ability of different types of USVs providing guidance for moving obstacle avoidance, 
while the USVs are equipped with low-level controllers robust enough to handle any such 
environmental disturbances. Therefore, for simplicity such considerations have not been made in 
the current validation of the proposed system.  

 
In Layer 1, a circular safety region is considered for all USVs regardless of its shape and 

size, when obtaining the path using the A* algorithm. In relevance to our proposed system being 
directed towards USVs with different maneuvering abilities, we acknowledge that surface vehicles 
with an elongated shape that benefit from being able to navigate through narrow spaces is restricted 
in its path following capabilities following this over-simplified circular safety region 
implementation; an oval safety region would therefore prove to be a more appropriate assumption 
in such a case. Therefore, as future work we intend to incorporate better fitting safety regions for 
USVs of various shapes in the path planning and path following process of the proposed system.  

 
Potential function-based systems operate relying on the overall energy state of the system. 

The system tends to move towards the closest minimum energy state termed as the equilibrium 
condition. For increasing 𝑛, the total energy of the system is higher and depending on the 
difference between the initial system potential energy state and equilibrium state, the rate at which 
the system tends to move towards equilibrium is also higher. Therefore, the scaling parameters for 
the potential functions must be tuned appropriately for significant changes in 𝑛. We also note that 
the potential function scaling parameters must be tuned to remain sufficiently small such that 
changes in the total potential experienced by each agent remains small. To ensure that the 
Lyapunov rate remains uniformly continuous, a sufficiently high system refresh rate with frequent 
moving obstacle prediction must be implemented. A larger detection radius from an agent ensures 
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larger training data for incrementally better moving obstacle path prediction. Therefore, with a 
longer predicted path the change in the total potential at every system update cycle contributed by 
the moving obstacle avoidance potential term will be smaller and gradual over a longer period 
until passing.  

 
Although the proposed system with static and moving obstacle repulsion showed 

considerable improvement in reducing maneuvering effort for dynamic obstacle avoidance in a 
clear harbor setting, we acknowledge that further investigation must be made before its application 
in cluttered environments. Potential function-based systems often suffer from unforeseen local 
minima and claiming generality of application of the proposed system in any harbor setting is 
premature at this stage. Therefore, as future work of our multi-USV navigation framework, we 
intend to investigate potential local minima cases during dynamic obstacle avoidance in harbor 
environments and integrate possible solutions to the proposed framework along with real-world 
experimental validation of the system.   

 
5. Conclusion 
 

In this paper, a novel multi-USV navigation framework with path planning and extended 
adaptively weighted potential functions based on various maneuvering response time capabilities 
of various USV systems is proposed. A diminishing series of repulsive force along the predicted 
path of a detected moving obstacle allows. reduced cross-track error and reduced maneuvering 
effort for dynamic obstacle avoidance.  
 

The system adaptively weights inter-USV interactions, USV and moving object repulsion, 
and leader attraction to the next way point to improve path following performance of multi-USV 
teams on a collision course with a moving object. The path followed to avoid dynamic obstacles 
offer less drastic cornering for USVs requiring less maneuvering effort using the proposed EAW 
method, compared to AW and the unweighted artificial potential field frameworks. Simulation 
results with teams of 𝑛 = 3 and 𝑛 = 6 USVs with one leader having fast and slow maneuvering 
response times at separate instances validate reduced cross-track error and reduced maneuvering 
effort with the proposed extended adaptively weighted framework. The significance of the 
proposed method in this paper is its applicability on a wide variety of USVs with different 
maneuvering abilities to improve dynamic obstacle avoidance and path following performance 
without complex dynamical model and control considerations for specific models of USVs. 
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Appendix - Scenario S1 and S2 for a 6 USV system 

 

Figure A1: Observed 𝑤௦ in S1: 𝑡௥ = 6 and S2: 𝑡௥ = 10, for the 𝑛 = 6 USV system. 

We present the simulation scenarios with maneuvering response times S1: 𝑡௥ = 6 and S2: 
𝑡௥ = 10 for 𝑛 =  6 robots to present the effects of larger 𝑛, acknowledging the fact that only a 
small number of USVs may be appropriate in the group at once, due to spatial and operational 
constraints in a narrow channel marine environment. With the extended adaptively weighted 
potential function framework, the relatively fast maneuvering response time case (S1: 𝑡௥ = 6) 
resulted in a low peak and short time spanning 𝑤௦ profile and the relatively slow maneuvering 
response time case (S2: 𝑡௥ = 10) resulted in a higher peak spanning over a longer period of time 
(see Figure A1). The EAW method retained a high 𝑤௦ for a longer duration compared to the AW 
method as expected, due to the USVs remaining much closer to the moving obstacle longer, still 
above the set safety distance when choosing 𝑎 in Section 3.2.2. 

For S1: 𝑡௥ = 6,  the AW method performed better in terms of obstacle avoidance compared 
to the unweighted method with a much efficient path in terms of distance travelled (see Figure 
A2). The proposed EAW method provided an even smoother followed path with a smaller 
corresponding cross-track error in comparison to the rest with smaller changes in USV orientation 
and smaller experienced repulsive force from the moving obstacle per unit time. The magnitudes 
of the experienced repulsive force recorded for the EAW method was consistent with the S1: 𝑡௥ =
6 with 𝑛 = 3 USV system case, showing loose inter-USV interactions during obstacle avoidance 
compared to the unweighted method.  

The results for the comparatively slower maneuvering S2: 𝑡௥ = 10 scenario for the 𝑛 = 6 
USV system remained consistent with the S2: 𝑡௥ = 10 scenario of the previously presented 𝑛 = 3 
USV system. The limited slow maneuvering USVs collided with the oncoming high-speed moving 
obstacle (𝑑௠ < 10𝑚) with the unweighted method. The AW method performed better than the 
unweighted method, consistent with the S2: 𝑡௥ = 10 scenario of the  𝑛 = 3 USV case in terms of 
smaller cross-track error, experienced moving object repulsion force and required USV change in 
orientation compared to the unweighted artificial potential field model. The observations of further 
reduced cross-track error, repulsive force per unit time resulting in smaller changes in USV 
orientation (maneuvering effort) remained consistent with the 𝑛 = 3 USV simulation as well for 
the proposed EAW artificial potential method (see Figure A3). 
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Figure A2: Simulation result for 𝑛 =  6 USVs, on a collision course with a moving obstacle showing reduced cross-
track error and maneuvering effort with the extended adaptively weighted potential framework for S1: 𝑡௥ = 6. 
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Figure A3: Simulation result for 𝑛 =  6 USVs, on a collision course with a moving obstacle showing reduced cross-
track error and maneuvering effort with the extended adaptively weighted potential framework for S2: 𝑡௥ = 10. 
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List of figure captions: 
 
Figure 1: Conceptual illustration of the double layered extended adaptively weighted potential 
field framework for multi-USV navigation, guidance and control based on USV maneuvering 
capabilities to reduce cross-track error and maneuvering effort. Layer 1 generates a path from a 
given map and layer 2 implements path following with extended adaptively weighted collision 
avoidance and inter-USV dynamics. 
 
Figure 2: Schematic of the path generated from the path planner in Layer 1 (left) in (Singh et al., 
2018) and the generated path along a narrow channel in the Port of Los Angeles harbor area (right). 
 
Figure 3: Adaptive weighting model based on moving obstacle distance 𝑑௠ and USV maneuvering 
response time 𝑡௥, for 𝐾௪ = 0.2. 
 
Figure 4: Experiment environment with a subset of the USV path from Layer 1 (blue) and modeled 
high-speed moving obstacle path (red) for dynamic obstacle avoidance validation. Area of study 
from the full map is shown in the subset image. 

Figure 5: Observed 𝑤௦ in S1: 𝑡௥ = 6 and S2: 𝑡௥ = 10, for the 𝑛 = 3 USV system. 

Figure 6: Simulation result for 𝑛 =  3 USVs, on a collision course with a moving obstacle showing 
reduced cross-track error and maneuvering effort with the extended adaptively weighted potential 
framework for S1: 𝑡௥ = 6. 

Figure 7: Simulation result for 𝑛 =  3 USVs, on a collision course with a moving obstacle showing 
reduced cross-track error and maneuvering effort with the extended adaptively weighted potential 
framework for S2: 𝑡௥ = 10. 

Figure A1: Observed 𝑤௦ in S1: 𝑡௥ = 6 and S2: 𝑡௥ = 10, for the 𝑛 = 6 USV system. 

Figure A2: Simulation result for 𝑛 =  6 USVs, on a collision course with a moving obstacle 
showing reduced cross-track error and maneuvering effort with the extended adaptively weighted 
potential framework for S1: 𝑡௥ = 6. 

Figure A3: Simulation result for 𝑛 =  6 USVs, on a collision course with a moving obstacle 
showing reduced cross-track error and maneuvering effort with the extended adaptively weighted 
potential framework for S2: 𝑡௥ = 10. 

 

 

 

 


