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Abstract— This paper presents a novel collective coverage
control strategy for robots to achieve effective coverage over
a large-scale spill. The proposed idea is based on the divide
and conquer approach that partitions a large irregular spill
in the workspace into a number of smaller zones and let the
robot team cover each packing zone sequentially. Ultimately,
the robot team can cover the entire area. For an effective
coverage operation in diverse and dynamic environments, we
propose a pivot-based control strategy performed by a pivot
robot and multiple planet robots. The pivot robot is located at
the center of the area to be covered and serves as a lighthouse
to all the working robots denoted as planet robots exploring
the area. By doing so, the planet robots do not require a global
coordinate system nor massive communication between robots
for their coordination, ultimately enabling an efficient, adaptive,
scalable, and fault tolerant coverage operation. The proposed
strategy is validated through extensive simulation experiments
with different packing shapes and different numbers of robots.

Keywords— Coverage Control, Multi-Robot Coordination,
Networked Robots, Artificial Potential Field.

I. INTRODUCTION

Coverage problems for mobile robots have been studied
for a long time due to their wide and various applications
such as oil spills cleaning [1]. However, many past re-
searches have been limited to a single-robot scenario which
is inferior in coverage efficiency and unconducive to large-
scale situations [2]. Recently, coverage control using multi-
robot systems to increase the coverage efficiency has been
actively pursued [3]. However, high efficient, scalable, and
fault tolerant coverage strategies for diverse and dynamic
environments have not yet been fully discovered due to
the challenges of coordination and communication among
robots. Moreover, research is also underway to handle var-
ious workspace shapes and large-scale coverage problems,
but the results are unsatisfactory.

In this paper, we propose a new collective operation con-
trol strategy with the advantages including high efficiency,
strong scalability, fault tolerance, and unknown obstacle
avoidance. This strategy first uses the divide and conquer
approach and partitions a large-scale irregular spill into mul-
tiple small areas with certain basic geometric shapes, such
as squares, triangles, hexagons, and circles. The partition
process is also named as geometric packing or tessellation
[4]. Then, using the proposed strategy, the robot team
consisting of a pivot robot and multiple plant robots will
cover each packing area sequentially and ultimately enables
a fully coverage to the entire workspace. Fig. 1 illustrates the
proposed collective coverage control strategy. The pivot robot
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Fig. 1: An image that illustrates our proposed collective coverage
strategy for various geometric packing shapes, including circles,
squares, triangles, and hexagons for irregular spill coverage. Blue
dashline shows the connectivities between planet robots (yellow)
and the pivot robot (green). Red dashline represents one robot being
in the vision of another robot. (Photo credit to Smithsonian.com)

is located at the center of the area to be covered and serves as
the lighthouse to all working robots denoted as planet robots.
Planet robots are connected wirelessly with the pivot robot.
The planet robot determines its movement by referencing
the estimated relative location of the pivot robot via radio
signal strength measurement [5], [6] and uses an on-board
vision sensor [7] to detect the spill boundary and avoid the
collision with other robots. In this way, the planet robot does
not require massive communication among the robots nor
a global coordinate system, but the whole team ultimately
enables an effective and efficient coverage operation.

The proposed coverage control strategy is verified by
extensive simulation experiments using different packing
types and different numbers of robots.

II. PROBLEM STATEMENT AND PROPOSED APPROACH

In this section, we state our research question based on
assumptions. Then, we elaborate on the coverage model with
moving robots and provide the control algorithm to achieve
the complete coverage over a large-scale spill. The control
algorithm features pivot-based multi-robot coordination and
collision avoidance between robots.

A. Problem Statement and Assumptions

Assume the spill is static, and its packing areas are
available after geometric packing process. We propose our
research question to be: How a team of robots can collec-
tively clean up a packing area with only local sensing but
not a global coordinate frame or external positioning device?
Specifically, the whole spill in the workspace W ∈ R2 is
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Fig. 2: (a) Coverage manifold when a robot maneuvers along Si.
An approximated fractional coverage area after ∆t time with speed
v is shown as ∆C. (b) Two possible situations in coverage operation
under circular packing. ∂P and ∂S represent the boundaries of the
packing area and the spill, respectively. Pivot robot Rpv (green) is
located at centroid of the packing area. rvision and rcomm denote
the vision sensor and wireless connection ranges for planet robots.
The purple dots indicate the deployment goals for planet robots.

denoted as SW ∈ R2. The packing areas after the geometric
packing are denoted as below,

Pi = {(x, y) : (x, y ∈ interior(PPx)i)},∀i = 1, ..., M, (1)

where PPx stands for a specific packing pattern such as cir-
cle, triangle, square, or hexagon; M denotes the total number
of packing areas for spill SW . Since the spill remained in the
packing area Pi is changing because of on-going cleanup, we
define it as:

Si = {(x, y) : (x, y ∈ interior(PPx)i) ∩ (x, y ∈ SW)},
∀i = 1, ..., M. (2)

We use ∂Pi and ∂Si to denote the boundary of Pi and Si,
respectively. If ∂Si does not exist or is not closed initially
since Si * Pi, the control algorithm should enable robots to
create a closed boundary ∂Si such that Si ⊆ Pi. In this case,
robots can track the spill boundary ∂Si and realize complete
coverage over Si.

We further state the following assumptions that our re-
search is based on: The spill to be covered is overall
integrated and has a smooth boundary; the spill is featured
by colors or textures that can be distinguished from the base
using image processing techniques.

B. Pivot-based Coverage Control Strategy

The coverage operation starts when the packing process is
completed. The targeted large-scale spill is partitioned into
M number of small packing areas with specific shapes, note
that the centroid of the packing area should reside in Si.
Meanwhile, the radius of the packing area cannot exceed the
range of wireless connectivity, i.e., rPi ≤ rcomm. Otherwise,
the planet robots may not be able to identify the pivot robot
and localize itself. We first deploy the pivot robot to the
centroid1 of the first packing area S1. The pivot robot can
be randomly selected and it can move autonomously to the
designated position under operator’s guidance. The planet
robots start performing coverage after the pivot robot is

1In fact, the pivot robot can be at any place within Si ∩ Pi in certain
circumstances such as Si ⊆ Pi. Here, we assume the pivot to be the centroid
of Pi just to simplify the analysis.

ready. The connectivity can be built between the planet robot
to the pivot robot by simply using a paired Wi-Fi Access
Point (AP) (for pivot robot) and an adapter combined with
an antenna (for planet robot). We can localized the planet
robot, including bearing and distance, through Wi-Fi signal
strength of the pivot robot [5], [8].

We show the coverage model here. When a robot is ma-
neuvering in Si and traveled points A(x1, y1) and B(x2, y2)
in sequence, the coverage manifold can be formulated as:

∆C = {M(x, y) : (0 < AM · AB < AB · AB)∩
(0 < AM · AD < AD · AD)}, (3)

D(x4, y4) =
(
−
√
‖AD‖2 − y24 ,

‖AB‖2 + ‖AD‖2 − ‖BD‖2

2‖AD‖
)

(4)
where M is a point in ∆C, and ‖AD‖ = d is the horizontal
coverage distance. The coverage manifold is demonstrated
in Fig. 2a. Furthermore, assuming a maximal processing
capacity V of a robot in removing the spill, such as the
centrifugal volume to algae spill harvesting and the filtering
system capacity to oil spill cleaning, by having ∆C =
vd∆t = V∆t, the maximum speed of the robot is bounded
by q̇max = V

d .
The coverage model (3) can be interpreted as the robot

cleans the spill d distance to its left during maneuvering.
This model can be applied in existing robots such as [9].
Note d value relies on the curvature of the trajectory, and
can be approximated based on the contour of the spill. We
choose left hand side coverage for the purpose that we want
all the robots to travel uniformly counterclockwise to avoid
the collision and realize a distributed coverage behavior. The
details will be elaborated later.

Now we provide the coverage control algorithm that
enables a full coverage to the packing area to remove the
spill, and converges to the pivot when the operation reaches
an end. Using qi = (xi, yi) and qpv = (xpv, ypv) to denote
the position of a planet robot Ri and the pivot robot Rpv ,
and rPj to denote the radius of packing area Pj , Algorithm
1 shows the procedure of the coverage control that runs
iteratively until the operation is completed.

To illustrate Algorithm 1, we present a finite state tran-
sition diagram consisting of four states in Fig. 3. Mean-
while, we sketch two possible initial situations under circular
packing with randomly distributed robots in Fig. 2b. In
the transition diagram, every robot starts with deployment
(State 1), where it moves toward the goal position on ∂Pj .
Especially, if the robot experiences a traverse Sj → ¬Sj , it
stops at the traverse point on ∂Sj and terminates deployment.
This case is demonstrated by R6 in Situation II of Fig. 2b.
State 2 means if the robot is deployed but does not detect
∂Sj or reside in Sj , it will start moving toward the pivot
robot until it detects ∂Sj . This state is demonstrated by R5

in Situation II. Note that the robot can travel as fast as it
can in State 1 and 2, since it is not performing the coverage.
In State 3, if no ∂Sj is detected but the robot resides in the
spill, it will maneuver along ∂Pj and create a boundary ∂Sj



Algorithm 1: Collective Coverage Control Algorithm for
every planet robot in packing area Pj

repeat
for Ri under deployment (State 1) do

Ri moves from qi to qvt +
qi−qpv
‖qi−qpv‖

rPj ;
if Ri experiences a traverse Sj → ¬Sj then

Ri stops at ∂Sj ;

for Ri under coverage operation do
if No ∂Sj is detected within rvision then

if Ri resides in Sj then
Ri covers the spill under (3) by tracking
∂Pj and hence creates ∂Sj (State 3);

else
Ri moves toward qpv (State 2);

else if ∂Sj is detected within rvision then
Ri covers the spill under (3) by tracking ∂Sj

(State 4);
if ‖qi − qpv‖ ≥ rPi then

Ri switches to track ∂Pj and continues the
coverage operation (State 3);

else
Ri fails in vision sensing, it stops and becomes

an obstacle;

Bounding speed q̇i = V
d

;

until ‖qi − qpv‖ ≤ ε, ∀i ∈ {1, ..., N};

that trailing robots can follow in State 4. All the robots in
Situation I and robots R1, R3, R4, and RN in Situation
II demonstrate State 3, while R2 and R6 in Situation II
demonstrate State 4. The coverage of this packing area ends
up with all planet robots gathering around the pivot robot
within a threshold ε according to the robot dimensions.

C. Motion Control based on Artificial Potential Field

To motivate robots to track ∂Si or ∂Pi in order to
cover the spill collectively but avoid collision, we introduce
artificial potential field based motion controllers for each
state. To avoid local minima and deadlock, we propose a
pre-prioritized collision avoidance strategy to coordinate the
robots working in different states. Meanwhile, all the robots
performing coverage over the spill shall move counterclock-
wise (CCW) about the pivot robot when tracking ∂Si or ∂Pi.
A uniform moving direction leads to a distributed coordinate
control.

The proposed avoidance priority is indicated in Fig. 3,
the robots working in lower priority have to yield to those
working in higher priority, and robots performing the cover-
age have the highest priority. The avoidance priority for these
states are determined as 3 = 4 > 1 = 2. No transition exists
between State 2 and State 3, because the robot converges to
the pivot only if nothing is detected. Furthermore, special
consideration should be given to the robots working in the
states of the same priority. As we stated above, robots
working in State 3 and 4 (i.e., tracking either ∂Si or ∂Pi)
are moving uniformly CCW. Given a continuous and smooth
spill boundary consisting of ∂Si and ∂Pi, the collision
happens only between a leading robot and its trailing robot.
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Fig. 3: A finite-state machine diagram showing the hybrid robot
coordination strategy. The robots perform collective coverage over
the spill when it is moving along either ∂Sj or ∂Pj , i.e., State 3
and State 4, which are of higher priority than the others in terms
of collision avoidance.

However, the robot working in State 3 does not have a
leading or trailing robot, hence, we will limit the possible
collisions to be from the robots working in State 4.

Similarly, for the robots working in State 1 and 2, since
they are moving either towards or against the pivot robot, no
collision is foreseen if their trajectories are non-coincident.
Such a pre-prioritized collision avoidance rule eliminates
local minima which halting the robot, and relies only on
local sensing. In terms of deadlock, although not observed
in the validation experiments, it can be tackled with appro-
priate motion planning methods [10]. In practice, robots can
recognize each other’s states with minimum communication
or via light signals and near field communication such as
Radio Frequency Identification (RFID) [11].

Assuming a single integrator model for planet robot con-
trol, i.e.,

q̇i(t) = ui(t), i ∈ 1, ..., N (5)

where ui(t) ∈ R2 denotes the control input for planet robot
Ri at time instant t, the detailed motion control law for every
state is provided below from Sec. II-C.1 to Sec. II-C.4.

1) Motion Controller for State 1: For robots working in
State 1, provided the goal positions for deployment qg =

qvt +
qi−qpv

‖qi−qpv‖
rPj , we construct an attractive potential field

formulated as

U
(1)
d (q) =

1

2
ξ1‖d(q,qg)‖22 (6)

where ξ1 is a scaling parameter and ‖d(q,qg)‖2 is the
distance between the current positions of robots and their
goals obtained from radio signal strength measurement [5].

Additionally, we propose a repulsive potential exerted on
the robots to avoid the collision. Such repulsive potential
field is formulated as

U
(1)
i (q) =

 ξ2
2

(
1

‖d(q,qi)‖2 −
1
d0

)2
, if ‖d(q, qi)‖2 ≤ d0,

0, otherwise ,
(7)

where ξ2 is a positive scaling factor, ‖d(q, qi)‖2 denotes the
distance between robot Ri that works in the states of higher
or equal avoidance priority to other robots qi that within the



effective range, which values are determined by the robot
dimensions.

Due to this, for any planet robot, the final constructed
potential field for motion control is:

U
(1)
f (q) = U

(1)
d (q) +

∑
i∈N (3,4)

rvision

U
(1)
i (q) (8)

where N (3,4)
rvision represents robots working under State 3 and

4 and within the vision sensing range rvision.
With (8), the control input for the robot working in State

1 is obtained:

u(1) = −∇U (1)
f (q)

=


ξ1(qg − q)+∑

i∈N (3,4)
rvision

(
1
d0
− 1
‖d(q,qi)‖2

)
ξ2∇d(q,qi)
‖d(q,qi)‖22

,

if ‖d(q, qi)‖2 ≤ d0,
ξ1(qg − q), otherwise ,

(9)
where u = [u1, u2, ..., ui] is the input velocity of all the
robots under deployment. Moreover, the input velocity ‖ui‖
is bounded by a maximum value according to Algorithm 1.

2) Motion Controller for State 2: Similar to State 1, the
source of attractive potential becomes the pivot robot Rpv ,
thus, we have attractive potential field formulated as

U
(2)
d (q) =

1

2
ξ3‖d(q,qpv)‖22 (10)

where ξ3 is a scaling parameter and ‖d(q,qpv)‖2 the distance
between robot current positions and pivot robot.

According to the pre-decided priority for collision avoid-
ance, the repulsive potential field for robots working in State
2 is constructed the same as State 1, which results in a control
law shown in (12):

U
(2)
f (q) = U

(2)
d (q) +

∑
i∈N (3,4)

rvision

U
(2)
i (q) (11)

u(2) = −∇U (2)
f (q)

=


ξ3(qpv − q)+∑

i∈N (3,4)
rvision

(
1
d0
− 1
‖d(q,qi)‖2

)
ξ2∇d(q,qi)
‖d(q,qi)‖22

,

if ‖d(q, qi)‖2 ≤ d0,
ξ3(qpv − q), otherwise.

(12)
3) Motion Controller for State 3: For the robot moving

along ∂P in State 3, since it has no leading or trailing
robot in the same state, it requires only attractive potential
to motivate movement. In order to avoid a discrete control
method which typically results in frequent position updates
and improve control efficiency, we propose a continuous
control law (13) and enable robots moving along ∂P .

We use attractive potential (10) to motivate the movement
of the robot. However, different from State 2, the robot in

State 3 has to move in a tangent way along ∂P and CCW
about the pivot. Thus, we determine the control law as below:

u(3) = −T · ∇U (1)
d (q) = T · ξ3(qpv − q),

T =

[
cos(−π/2) − sin(−π/2)
sin(−π/2) cos(−π/2)

]
=

[
0 1
−1 0

]
.

(13)

Particularly, it is difficult to keep the robot in the orbit
and tracking ∂P with only attractive potential, as a distur-
bance may yield ‖qpv − q‖ > rcomm and break the robot
connection to the pivot robot. Due to this, we can introduce
an asymmetric potential function such as (26) in [12] and let
ρ2 = rcomm and ρ0 = rPj for a stabilized motion.

4) Motion Controller for State 4: Since collision happens
only between leading robot and its trailing robot if they
are working in State 4, We construct an attractive potential
U

(4)
d exerted on robot Ri by its leading robot Ri+1. When

Ri is tracking ∂S, the measurement to the length along
the spill boundary between itself and other agents within
its vision sensing range is used to construct the potential
field. Practically, such measurement can be performed with
stereo vision sensors, LIDAR, or high resolution laser range-
finders, along with the techniques developed in [13], [14].
Suppose there is a function s = f(q) to represent the spill
boundary ∂S, where s ∈ [0, ‖∂S‖] indicates the length
between a reference point and an agent of position q in
CCW. We can show that once a robot Ri+1 falls within the
vision range of its trailing robot Ri, the distance between
the two neighboring robots, namely li = ‖qi, qi+1‖∂S , can
be decided by

li =

{
si+1 − si, if si+1 ≥ si,
si+1 − si + ‖∂S‖, if si+1 < si.

(14)

If the leading robot of Ri is beyond its vision range rvision,
we define a virtual distance l∗i and update (14) as below:

l∗i =

{
li, if li ≤ rvision,
rvision, if li > rvision or li is unknown.

(15)

The attractive potential function is then defined as

U
(4)
d =

1

2
ξ4l
∗
i
2 (16)

where ξ4 is a positive scaling factor. The linear velocity input
ui should be in the direction of the negative gradient of U (4)

d

with respect to si such that

u
(4)
i = −∇siU

(4)
d = ξ4l

∗
i . (17)

It can be easily proved that the attractive potential U (4)
d

can motivate robot Ri to move forward and as well prevent
collision with its leading robot, since it is always non-
negative and ui → 0 iff l∗i → 0. Furthermore, all the planet
robots will gather and stop around pivot robot when the
coverage control is completed.



D. Coverage to the Next Packing Area

When a group of robots completes the coverage to the
current packing area Pi and removes the spill Si, the pivot
robot, after relocation by human operator teleoperation or
navigation, can herd all the planet robots into the next
packing area Pi+1 to perform a new round of coverage
operation. One of the practical herding strategies can be
found in [15], which features robot connectivity preservation.

III. SIMULATION EXPERIMENTS

Extensive scaled-down simulation experiments were con-
ducted to validate the proposed collective coverage strategy
in Robotarium platform [16], which is a MATLAB based
open source multi-robot coordination testbed. Robotarium
has a 2D arena of size 3m × 3m, where disperse scaled-
down robots are deployed to simulate the collective coverage
operation. A variety of scenarios were designed and tested
for validation. In the experiments, R1 denotes the pivot robot
and is located at the center of the arena. The linear velocity
of the robot is bounded by vmax = 0.075 m/iter. The average
width d in Fig. 2a is set to be 0.33 m.

A. Evaluation Metrics

The following metrics are decided for our experiments to
evaluate the performance of the proposed strategy:

1) Lyapunov candidate function (Convergence):

L =
∑

Ri,Rj∈P,i6=j

‖qi − qj‖, or L =
∑
Ri∈P

‖qi − qp‖. (18)

The second function is used if only one planet robot is
involved, where qp is the location of the pivot robot.

2) The number of iterations (kstop ≤ kmax) to reach the
following stop condition:

Stop at kstop if the current area A(t) ≤ Amin. (19)

Here Amin is defined to be 1% of the initial area.

B. Experiment Scenarios

The following four scenarios are designed to demonstrate
the efficacy and efficiency of the proposed solution.
• Sc. 1 - Adaptiveness to various packing shapes
• Sc. 2 - Scalability which allows multiple robots
• Sc. 3 - Fault tolerance to the robot with coverage failures
• Sc. 4 - Unknown obstacle during the operation
• Sc. 5 - Sequential coverage to multiple packing areas
All the scenarios demonstrate the convergence of the

planet robots at the end of the coverage operation. The exper-
iment videos are available at https://goo.gl/K6u589.

C. Scenario 1 - Adaptiveness to Various Packing Shapes

To demonstrate the adaptiveness to different packing
shapes with our proposed collective coverage control strat-
egy, we select four representative geometric shapes including
triangle, square, hexagon, and circle. In contrast, [17] and [1]
can deal with only square cell coverage.

Among all the four shapes, the circular packing method
can maximize the wireless communication range, i.e., can

Fig. 4: The figure shows a eight-robot team performing the
proposed pivot-base collective coverage over the packing areas of
different shapes including triangle, square, hexagon, and circle. This
robot team consists of a pivot robot, denoted as “1” and located at
the centroid of the area, and seven planet robots. The planet robots
are randomly distributed before the task.

Fig. 5: The snapshots show the evolution of the robot trajectories
and remaining area in shadow, under circular packing method.

have possibly a greater packing area with less travel of
robots than other shapes. However, as the main disadvantage,
circular packing allows 90.69% coverage rate with unique
radius circles and hexagonal lattice arrangement [18]. To
improve the coverage rate, one can use circles with different
radii and increase the packing densities to be > 91%
[19]. Triangular, square, and hexagonal packing methods can
achieve 100% coverage rate; however, the packing shapes
have to be aligned adequately to avoid overlap or gap.
In practice, the alignment issue can be circumvented by
assuming a uniform orientation for all packing areas using
magnetic compasses. Note that rPj in Algorithm 1 is not a
constant for non-circular packing methods, hence (13) may
not apply. Nevertheless, rPj can be obtained by referencing
the attitude of the pivot robot and using estimation methods
such as [20].

The coverage performance and robot trajectories of the
four packing shapes are shown in Fig. 4. One can see that a
complete coverage over these areas is achieved with a eight-
robot team working under our proposed control strategy.
Thus, any large-scale spill which can be partitioned into
several packing areas shall can be covered in the same
manner. Particularly, we present area evolution snapshots for
the circular packing coverage in Fig. 5, which demonstrate
the evolution of robot trajectories and depict the remaining
area with shadow.

Fig. 6a and 6b show the coverage performance under
Situation II of Fig. 2b, where ∂S already exists at the
beginning of the operation. In this case, robots R5 and R6

detected ∂S when continuously heading toward the pivot
robot, then they entered State 4 and started following ∂S,
rather than moving along ∂P as the other robots.

https://goo.gl/K6u589


(a) (b) (c) (d)

Fig. 6: (a) Initial distribution of robots demonstrating Situation II of
Fig. 2b, where ∂S already exists before task. (b) The trajectories of
robots. (c) An abrupt obstacle was introduced during the operation
in time t = 1300+. (d) Trajectories of the robots that succeeded in
avoiding the obstacle and performed complete coverage.

Fig. 7: The first row shows the initial random distributions of
robots; the darker disk is circular packing area in the workspace.
The pivot robot is 1 and located at and located at the centroid of the
area. The second row shows the robot trajectories, with the amount
of robots being 2, 6, 11, and 16, respectively.

D. Scenario 2 - Scalability Which Allows Multiple Robots

To improve the efficiency of coverage, we further demon-
strate the scalability of our proposed solution that allows
any number of planet robots. We take circular packing as an
example, one can easily apply the same control scheme to
other packing methods.

We start from the minimal number of robots N = 2,
with one of them serving as pivot robot while the others
being planet robots. We scale up N with the same interval
of five and therefore obtain four scenarios with N =
{2, 6, 11, and 16}. The initial distributions and trajectories
of the robots during operation are shown in Fig. 7.

The area evolution during the cleaning process is shown
in Fig. 9a, from which we conclude the improvement in the
efficiency of our proposed solution. The area of the cleaning
zone decreased steadily as time elapsed. The kstop was
reduced significantly while having more robots deployed in
the cleaning operation. Nevertheless, more robots employed
does not always lead to a shorter operation time. Time may
be consumed in robots avoiding each other in a crowd.
The results in Fig. 7 also validate the effectiveness of our
robot motion controller and collision avoidance strategy by
showing a smooth trajectory for every robot. The kstop values
for all the scenarios are listed in Table I.

At the end of the operation, all the robots gathered around
the pivot robot as indicated in Fig. 7. This characteristic
potentially allows further deployment such as moving to
the next packing area or docking for recharging. Such con-

Fig. 8: The coverage evolution of a large-scale spill partially shown
with snapshots using four robots after circular packing partition.

TABLE I: kstop value and the total distance traveled by the planet
robots until reaching kstop for N = 2, 6, 11, and 16.

Scenarios N = 2 N = 6 N = 11 N = 16
kstop value 7662 2247 1491 910

Distance traveled (m) 73.33 257.78 454.94 607.53

vergence property is validated through Lyapunov candidate
function (18) and is demonstrated in Fig. 9b. In particu-
lar, convergence in scenario N = 2 was step-like during
operation, because the second Lyapunov candidate function
in (18) was used for evaluation. While the planet robot
was covering P , it approached the pivot in an intermittent
way. Additionally, due to physical restraint of robots, the
Lyapunov candidate function value did not converge to zero
when the task was completed.

We also consider the energy consumption during the
collective cleaning task, which can be reflected by the entire
traveling distance of robots employed. The entire traveling
distances with different N are indicated in Table I. Notice-
ably, at the expense of a shorter operation time, the total
traveled distance increased when more robots were deployed.
The evolution of traveled distance is shown in Fig. 9c.

E. Scenario 3 - Fault Tolerance to the Robot with Coverage
Failures

We demonstrate fault tolerance capability of our proposed
solution when the robot has coverage failure. Once employed
in operation, a robot may face many issues that prevent it
from removing the spill, e.g., a chemical substance removal
robot facing filtering system failures, or an algae harvesting
robot being fully loaded with algae. Even if the faulty robots
can be simply isolated from the operation, we still want to
let them converge to the pivot robot and collect them at the
end of the operation, if they still have mobility.

In our experiment, the robots have the same circular
packing setting demonstrated in Fig. 4. However, R4 lost
its coverage ability at t = 500 but regained it at t = 1500.
Fig. 9d shows R4 kept moving along ∂S and converge to
the pivot robot when encountered such coverage failure. Due
to this, the spill area evolution shown in Fig. 9e as the
red dashline indicates a falling in the spill removal rate at
t = 500, but it witnesses an increase at t = 1500 because
R4 regained the coverage ability.

F. Scenario 4 - Unknown Obstacle During the Operation

Unavoidably, the robots may encounter obstacles during
the coverage operation in an unknown environment, such
as rocks in water areas and robots that lose mobility. We
demonstrate the capability of our strategy in abrupt obstacle
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Fig. 9: (a) The area evolution of the packing area as time elapsed, starting from the initial value of 3.14. The star sign at the end of
every line indicates the kstop value of the corresponding scenario. (b) The convergence of the robot team in logarithmic while the task is
performed. The star sign at the end of every line indicates kstop of the corresponding scenario. (c) The distance traveled by all the working
robots while performing the cleaning task. (d) R4 encountered a coverage failure at t = 500 when moving along ∂S but recovered at
t = 1500. It still converged to the pivot robot at the end. (e) The area evolution when R4 was with (red) and without (black) a failure.

avoidance. As shown in Fig. 6c, an abrupt obstacle was intro-
duced in time t = 1300+; however, the robot team succeeded
in avoiding this obstacle using approaching sensors such as
sonars and LIDARs, and achieved complete coverage over
the area still, as shown in Fig. 6d.

G. Scenario 5 - Sequential Coverage to Multiple Areas

We demonstrate a large spill coverage scenario using four
robots after partition with circular packing as described in
Sec. II-D. The large spill was removed in sequence by
covering every individual packing area, which process is
partially depicted with snapshots in Fig. 8 due to space limit.

IV. CONCLUSION AND FUTURE WORK

In this paper, a novel pivot-based collective coverage
strategy with a multi-robot team is proposed for large-
scale spills coverage problems. The proposed strategy is
validated through simulation experiments to be adaptive to
various packing areas and can achieve a complete coverage,
and further realizes the cleanup to the large-scale spill by
covering all the partitioned packing areas in sequence. With
the proposed solution, all planet robots will converge to the
pivot robot at the end of the operation, which enables further
operations such as cleaning up the next partition area, dock-
ing for recharging, etc. This collective coverage strategy fea-
tures strong capabilities including scalability, fault tolerance
to coverage failures, and abrupt obstacle avoidance, which
further enhance its efficiency and robustness. Our future
goals mainly focus on validating our solution with field tests,
and promoting collaboration among multiple teams.
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