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Abstract

Rendezvous control of multiple robots without losing network connectivity
has important implications in multi-robot system including formation con-
trol, coordinated task assignments, and cooperative robotic missions. This
paper introduces a new coordinate-free, bearing-based algorithm to enable
rendezvous of distributed mobile robots at any designated leader robot node
using hierarchical tracking of wireless network topology. An assumption is
made that the robot can only sense and communicate with their neighbors
(i.e., local sensing). The proposed approach preserves connectivity during
the rendezvous task, adapts to dynamic changes in the network topology
(e.g., losing or re-gaining a communication link), and is tolerant of mobility
faults in the robots. We theoretically analyze the proposed algorithm and
experimentally demonstrate the approach through simulations and extensive
field experiments. The results indicate that the method is effective in a va-
riety of realistic scenarios in which the robots are distributed in a cluttered
environment.
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1. Introduction

Networked mobile robots have tremendous potential for applications such
as monitoring and securing large complex environments, in search and rescue,
first response, and multi-purpose mobile sensor networks [1, 2, 3, 4, 5, 6, 7].
Rendezvous control is an important module of a multi-robot system to enable
formation control of multiple robots without losing network connectivity.
Consider the formation control of multiple robots using a leader robot [8, 9].
The leader robot has a communication module that is superior to those of
other robots. Thus, the operator of the multi-robot system can communicate
with the leader robot and control the leader robot. All robots, except for
the leader, move based on the local interaction with nearby robots. To
maintain network connectivity between the robots, we use the rendezvous
control occasionally so that all robots move closer to the leader robot while
avoiding a collision. In this way, we can control the multi-robot system
without losing network connectivity.

Specifically, rendezvous control is a strategy to enable rendezvous of all
robots at a designated leader robot. Figure 1 shows an example of three
mobile robots rendezvousing at a static leader robot (control station).

We consider a realistic scenario in which the robots do not have a global
localization1 or a positioning framework, i.e., the problem of rendezvous with-
out coordinates [10]. A solution can be achieved through bearing-only or
range-only control methods [11]. In this scenario, the robots cannot move to
a designated position directly but only with a cooperative (or distributed)
network control approach.

There has been a significant amount of research done in distributed con-
trol methods to achieve rendezvous based on consensus among robots (e.g.,
[12, 13, 14]). However, instead of rendezvous at an arbitrary point, we focus
on rendezvous at a specific (mobile) node that can be dynamically assigned
and updated. We call this any-node rendezvous, which has various appli-
cations such as sensor deployments [15], multi-agent coordination based on
leader selection (rendezvous at the leader robot) [8], rendezvous at a des-

1A Global Position System (GPS) cannot be used in some cases. For instance, con-
sider the case where robots are deployed in underground or underwater environments and
locations where the GPS satellites do not have good reachability.
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Figure 1: A representative figure showing three robots arriving at a control station (leader
robot).

ignated position for automated multi-agent recharging [16], and collective
transport of multiple robots [17].

In this paper, we propose a rendezvous control strategy to achieve any-
node rendezvous without coordinates. Particularly, we propose a bearing-
aided hierarchical tracking method that exploits the dynamic nature of a
wireless network topology. To the best of our knowledge, our paper is unique
in achieving multi-robot rendezvous by using wireless communication sensing
among robots. The proposed control mechanism enables unique advantages
such as detection and a fault-tolerance mechanism for mobility or communi-
cation failures in the robots. We base our approach on graph theory and local
sensing. The proposed bearing-based control algorithm explicitly bounds the
control inputs2 (e.g., upper bound of robot velocity) to realize a platform-
independent rendezvous strategy. The main contributions of this paper are
as listed below:

• We propose a coordinate-free bearing-aided rendezvous control method
and discuss its theoretical properties such as guaranteed convergence

2Note the control input bounds are determined by hardware limitations (finite forces
or torques).
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and connectivity maintenance during the rendezvous task;

• We implement the proposed strategy by extending a wireless signal
tracking navigation system based on the one proposed in our previous
work [18], in which the bearing (direction of arrival) of neighboring
robots is estimated using the RSSI (Received Signal Strength Indicator)
of a rotating Wi-Fi directional antenna on the robot.

• We integrate a bearing-aided obstacle avoidance strategy in the ren-
dezvous control algorithm;

• We conduct comprehensive field experiments and simulations to verify
and validate the proposed rendezvous method.

The main advantages of the proposed rendezvous method include: (1)
operation in cluttered and dynamic environments (no prior knowledge of
obstacles), and (2) fault-tolerance (e.g., faults in robot mobility or commu-
nication).

2. Related Work

Rendezvous in a multi-robot system has been studied extensively in the
literature because of the wide potential applications such as in formation
control [19], coordination among robots [20], cooperative control [21], and
autonomous recharging [22]. A theoretical graph approach has been the base
of many rendezvous control solutions as it provides a theoretical foundation
to propose and validate control laws [23, 24, 25, 26].

Notably, in most of the works that addressed the problem of multi-robot
rendezvous, rendezvous control is performed by sharing robot state (e.g., po-
sition) and achieving a consensus among the robots either in a centralized
or in a distributed manner. For instance, in [27], the rendezvous happens at
the centroid location of all the robots (geometric consensus). In [28], a ren-
dezvous control solution is proposed using an average of bearings (headings)
of the nearest neighbors, so that all robots meet at the same point over some
iterations.

Distributed, bounded control laws that prove convergence can enable ren-
dezvous while maintaining connectivity among the robots [29, 30, 13]. In
[31, 32], circumcenter-based consensus algorithms are proposed, which until
now has predominated the rendezvous literature. However, consensus al-
gorithms cannot work with the presence of faulty robots, link failures, and
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unknown disturbances. Therefore, rendezvous strategies that are tolerant to
known or unknown failures have been proposed in the literature using a ro-
bust PID control method [33] or control protocol applicable to rectangle-like
robot distributions [34]. Although these methods are restricted regarding
geometry or control implementations, they advance the work toward robust
robot rendezvous.

A major advancement in fault-tolerant rendezvous framework was made
in [35] in which the authors use Voronoi partitioning of safe regions between
robots to assure rendezvous tasks, even when unidentified broken robots
exist. However, this method requires either a controllable sensing range or
a densely-connected communication graph. Meeting these requirements may
not always be feasible in real-life applications. Therefore, we aim to address
the problem of fault-tolerant rendezvous that can operate even in sparsely-
connected graphs with a limited sensing range, assuming that fault-detection
is in place to detect faults in robots.

Similar to the work in [11, 36], we explicitly consider the upper bound
of the rendezvous control inputs, especially maximum robot velocity Sm,
which is determined by the kinematic constraints of the robot platform. This
expands the applicability of our controller in a variety of robot platforms.

Importantly, an additional consideration is that the efficacy of a ren-
dezvous task has to be guaranteed despite the lack of global coordinate sys-
tems, which is the motivation behind coordinate-free rendezvous approaches.
For example, the authors in [10, 11, 37, 38] proposed bearing-only control
laws to achieve consensus among robots. Taking inspiration from these ap-
proaches, we consider a coordinate-free rendezvous problem in which only
bearing sensors are used for distributed sensing and control in a rendezvous
algorithm. However, such works cannot be used for the any-node rendezvous
task, since they do not assure that all robots meet at a predefined location.
Moreover, the works mentioned above are not fault-tolerant regarding link
or mobility failure. Therefore, we do not directly compare our work with the
state-of-the-art consensus-based rendezvous methods.

In practical applications, robots are deployed in a cluttered environment
with many obstacles (e.g., [39]). In such scenarios, it is important to integrate
collision avoidance methods in the rendezvous algorithm. In the literature,
artificial potential fields have been primarily used to avoid obstacles [40].
However, in our work, we implement a bearing-based obstacle avoidance
system as presented in [18, 41] in our rendezvous algorithm, as it can be
readily integrated into our bearing-based rendezvous controller.
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A communication graph hierarchy (i.e., a tree structure) has been proven
useful in the exploration of unknown environments by a team of robots while
maintaining links between the robots [42]. Also, in [43], a hierarchical tree
structure was used to achieve cyclic-pursuit rendezvous of multiple robots.
Therefore, we use a network/communication graph as the basis of our pro-
posed algorithm.

Borrowing several ideas and motivations from these works, we design a
coordinate-free bearing-based robot controller that tracks the hierarchy of
the wireless network topology to coordinate the any-node rendezvous task
in a distributed fashion while integrating a collision avoidance system using
onboard sensors. We also extend the problem space to enable fault-tolerance
in the controller regarding robustness for link or mobility failures. Specif-
ically, the proposed algorithm adapts to dynamic changes in the network
topology (e.g., losing or re-gaining a communication link), and is tolerant of
identifiable mobility failures.

3. Background

This section reviews background information that is used in the proposed
rendezvous control.

3.1. Graph theory

Following graph theory [44], G = (V,E) denotes an undirected weighted
graph with node set V and edge set E. Every edge in E has its weight
w(e) :→ Z+. A graph G is connected if there exists a path (sequence of
connected edges) between every pair of distinct nodes. A tree is a connected
graph without cycles. A rooted tree has one node which is set as the root.
Each node in a rooted tree has a parent-child relationship with its neighboring
nodes. In a rooted tree, p(v), the parent of a node v, is the node adjacent to
v on the path to the root. c(v), child of a node v, is a node of which v is the
parent. A leaf in a tree graph is a node having no child. Figure 2 illustrates
a connected tree graph, in which c(v) is a leaf.

The subgraph of G induced by a node set S ⊂ V is the graph (S,ES) in
which ES = {{x, y} ∈ E : x, y ∈ S}. In a tree graph, a path between any two
nodes is unique. Given a connected, edge-weighted graph G, a shortest-path
tree T ⊂ G is a tree, such that a path in T , between any node u and the
root, is the shortest-path in G between the two nodes.

6



root

v

p(v)

c(v)

Figure 2: Illustration of a connected tree graph.

3.2. Assumptions and definitions

We introduce assumptions and definitions that drive our control laws.
Let qi ∈ R2 denote the position of a robot i. We assume that each robot
is equipped with a wireless (ad-hoc) network device and a bearing sensor
to measure the relative bearing of neighboring robots. The robots sense
neighboring robots and share this information across the network, which we
use to build and dynamically update the network topology. The proximity
information from local sensors (e.g., sonar, radar, and lidar), if available,
can be used to assign weights to the edges in the network topology. If such
range sensors are not available, then each edge will have an equal weight in
the network graph. Note, we assume that the local proximity sensors and
bearing sensors are not faulty.

We say that a robot senses another robot in the case where the distance
between these two robots is shorter than Rm and the line-of-sight (LOS) is
established between the two robots. We also claim that a robot encounters
another robot in the case where the relative distance between them is shorter
than ε ≈ 0 � Rm.The two robots are neighbors in the case where they can
sense each other while satisfying that the relative distance between these two
robots is shorter than Rm − ε.

In the case where a robot is equipped with range sensors, such as radar or
lidar, they can be used by the robot sensing its neighbors. In the case where
two robots sense each other, the line segment connecting the two robots
must not intersect an obstacle. This way, as one robot moves towards its
neighboring robot, it does not collide with any obstacle.

In our experiments, a robot is not equipped with range sensors. In our
experiments, a robot uses a communication module to sense its neighboring
robot. In the case where LOS between one robot A and another robot B is
blocked, then a signal strength from A to B degrades significantly. Also, as
the relative distance between A and B increases, signal strength from A to
B decreases. Considering these aspects, we assume that A senses B in the
case where signal strength from A to B is bigger than a certain threshold.
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We use the network topology to build the adjacency graph of the multi-
agent system. Let G = (V,E) represent the connectivity of the multi-agent
system. In the graph G, every node in V represents a robot. Every edge,
say {v1, v2} ∈ E, indicates that two robots, corresponding to v1 and v2, are
neighbors. This further implies that the two robots can sense each other.
The weight of an edge {v1, v2} is the relative distance between two robots
associated to v1 and v2, respectively. If range sensors cannot be utilized,
equal weights are used.

Let G0 = (V0, E0) denote the initial connectivity/interaction graph (at
time step t = 0). We assume that G0 is connected. We further assume
that one robot, say D, is designated as a rendezvous robot, which can be
re-assigned at any time.

3.3. Goal

The goal of an any-node rendezvous algorithm is to gather every robot
in V at the root (rendezvous) robot D, i.e., when lim

t→∞
‖qD − qi‖ = 0, ∀i ∈

V (G)−D.

4. Proposed Rendezvous Control Approach

To achieve the above goal, we propose a rendezvous controller using the
following procedures: first, let every robot, except for D (the root/leader
robot), rendezvous at D while maintaining connectivity; once all robots ren-
dezvous at D, we let D head towards the designated rendezvous location,
since D can lead the other robots to the final position.

4.1. Rendezvous algorithm

In Algorithm 1, we present the core rendezvous control approach. The
algorithm works as follows. The network graph G is available to all robots in
the network (see Algorithm 2 for our approach on building the network graph
in a distributed fashion). Based on the graph and the assigned rendezvous
robot D, we build the shortest path tree T = (V,ET ) from G rooted at node
D, using Dijkstra’s algorithm [45]. Here, the number of edges |ET | = |V |−1.
Since we assume an undirected and connected graph G with non-negative
weights, the shortest-path tree T exists and is guaranteed by the Algorithm
1. In graphs where all edges have equal weights, T becomes the shortest-hop
tree generated by breadth-first search (BFS) algorithm.
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Algorithm 1 Rendezvous Control Algorithm

D is designated as the rendezvous location
Get the updated network graph G using Algorithm 2
Given G, we build a shortest-path tree T rooted at D
repeat
u ← every robot
if u is associated to a leaf of T then
u begins heading towards p(u)
After encountering p(u), u becomes the child of p(p(u))

else if u is a parent robot with at least one child then
if u encounters all its children then
u becomes a leaf node and heads towards p(u)

end if
end if
if there is a change in neighbor set of a robot (e.g., addition or removal
of an edge because of a communication interruption) or change in the
root node assignment then

Update the network graph G utilizing Algorithm 2
Update the shortest-path tree T using the updated G and/or D

end if
until all children of D encounter D

Every node, say u, that does not have any children is called leaf nodes in
T . We represent the immediate parent of a robot u as p(u). At t = 0, all
u nodes begin heading towards their parents. These movements initiate the
entire rendezvous maneuvers. Since every robot associated with a leaf of T
begins moving initially, p(u) encounters all its children as the time goes on.

A robot can decide if it has met its parent or its child using its local
sensor information. For example, in our experiments, we use the RSSI from
the Wi-Fi receiver as the parameter to decide if it is close to (encounter) its
parent or its child by applying a RSSI threshold.

After encountering all its children, p(u) heads toward its parent, say
p(p(u)). On the other hand, once u encounters its immediate parent p(u),
the robot u becomes a child of its next parent in the hierarchy of the tree, say
p(p(u)), and moves toward p(p(u)). This process is repeated until all robots
reach the top-most parent, the root robot D, where they should rendezvous.
Thus, the above iterative approach is carried out until all robots rendezvous
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Figure 3: Illustration of the procedure following Algorithm 1. The obstacles in the envi-
ronment are illustrated as red circles.

at D, which is the stop condition of the algorithm.
Figure 3 illustrates the procedure of the proposed algorithm. At the top of

Figure 3, the initial graph T of a randomly-generated graph is illustrated, in
which u1, u2, u3, u6, u7, u8 are leaves of T . For instance, u3 is only connected
to u2, u6, and u5. Initially, all nodes head toward their corresponding parents
following the hierarchy in T . The movement of each robot is depicted as an
arrow in this figure. In further iterations, u4 and u10 encounters all their
children, and then all of them moves to their parents u5 and u11, shown in
the middle of Figure 3. Finally, after u5 (or u11) encounters all their children,
they begin heading toward D (bottom of the figure). Note that the obstacle
boundaries are depicted as red circles.

Thus, the rendezvous is achieved using the iterative tracking movements
of the child robots to their parent robots using the hierarchy in the tree T .
Using the definition of T , the movement of a child robot towards its parent in
T is along the shortest path to D contained in G0. The velocity control inputs
for individual robots are driven by its local bearing sensors. See Sec. 4.2 for
more details on the robot controller.
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Algorithm 2 Distributed Algorithms for Building a Distance List L

Initialize Li,−1 as an empty set
Initialize Li,0 as the local neighbor lists which are built using robots in Ni

k = 0
For every robot i ∈ V
repeat

Detect the change in the local list Li, L̄i,k = Li,k − Li,k−1
Send L̄i,k to all uj ∈ Ni

Receive L̄j,k from all uj ∈ Ni

Li,k+1 = Li,k + L̄j,k for all uj ∈ Ni

k = k + 1
until k ≥ D(G)

To initialize Algorithm 1 following a distributed pattern, each robot senses
its neighbors utilizing local sensors and generates a set named neighbor list
Li. Every robot thereafter shares its neighbor list utilizing a distributed
algorithm (see Algorithm 2) and generates G utilizing the accumulated list
L containing all vertices and edges of the networked system. Algorithm 2 was
designed taking inspiration from the distributed consensus algorithm in [19].
As an example, let’s consider a cycle graph consisting three nodes a, b, and
c. Obviously, L of the cycle graph is the aggregation of the following three
unordered lists: La = {b, c, wbc}, Lb = {a, c, wac}, and Lc = {a, b, wab}. Here,
wij for every edge is calculated utilizing available range sensors of robots.
Otherwise, equal weights are used.

In Algorithm 2, Ni is the neighbor set of a robot i. Also, D(G) represents
the diameter of G (the number of nodes from D to a node which is the
farthest from D along the shortest path). In this algorithm, a robot shares
the update in the local neighbor list with its neighbors. Hence, the global
network graph G can be derived in a distributed manner. The convergence to
a global list L (hence the global network graph G) at every robot is achieved
in a maximum of D(G) iterations. Therefore, Li,D(G) = L ∀i ∈ V . This
statement can be proved similarly to Proposition 1 of [19]. Therefore, the
proof is omitted in this paper.

The most severe computation burden of Algorithm 2 relies on D(G) (the
graph diameter of G) and the highest number of edges (neighbors) at every

node. From [46], we note that D(G) has an upper bound of (N−1)
K

. Here,
K implies the K-connectedness of the graph. In practical applications, the
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number of robots is significantly smaller than the number of edges in the
network, and as a consequence, Algorithm 2 is scalable. Moreover, a dense
network (a completely connected graph, for example) leads to a smaller di-
ameter and a larger number of edges when compared to a sparse graph such
as a path graph. Hence, the workload of both communication and computa-
tion can be well balanced concerning graph density. It is worth noting that
Algorithm 2 is used only in the case where the network topology changes (for
example, a robot detects a new neighbor), after initially building the list L.

4.2. Bearing-aided robot velocity controller

Following the bearing-aided consensus controllers in [38, 11], we devise a
velocity controller q̇i = [ẋi, ẏi] for robot i to head toward its parent robot
p(i) as below:

q̇i = vip

[
cosαip

sinαip

]
(1)

where αip = tan−1 (yp−yi)
(xp−xi) represents the relative bearing of the parent robot

p(i) (parent of robot i) with respect to the robot i, in the coordinate frame of

robot i. We use the rotation matrix of the robot R(θi) =

∣∣∣∣ cos θi sin θi
− sin θi cos θi

∣∣∣∣
to compensate the relative bearing from its own orientation θi. Thus, we

have

[
cosαip

sinαip

]
= R(θi)

(qp−qi)
‖qp−qi‖

. We assume the robots are equipped with a

bearing sensor that provides an estimate of the relative bearing αip.
The velocity control factor vip ≤ Sm ∈ R+ is set to a value proportional to

the distance between the robot and its parent robot, i.e., vip = f(‖qp(i)−qi‖),
if a range sensor is available. Else, the vip is set to a positive constant. For
instance, in our experiments, although we did not use a range sensor, we used
the RSSI from the Wi-Fi measurements, which is a function of the distance
between the nodes, as the function to determine the magnitude of the linear
velocity. Note, the velocity is bounded by Sm.

According to (1), the robot i moves and converges to its parent p(i), as
long as p(i) is stationary, which is guaranteed by Algorithm 1.

In Sec. 5.2.1, we elaborate on how we use a rotating directional antenna
as a bearing sensor that provides an estimate of the relative bearings of
the neighboring robots based on the direction of arrival (DOA) of wireless
signals. We also describe how we integrate the velocity controller with a
bearing-based obstacle avoidance strategy.
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4.3. Theoretical analysis of the proposed algorithm

We analyze the theoretical properties of the proposed method such as
convergence, connectivity maintenance,, and fault detection capability.

4.3.1. Convergence

We propose a theorem (Theorem 1) showing that the robots will eventu-
ally encounter D over time to complete the rendezvous process.

Theorem 1. As t → ∞, every robot’s position converges to D using the
control law in (1), provided that G0 is a connected graph.

Proof. To prove convergence, we need to show that the distance between all
the robots with respect to the root robot will converge. We consider the
following Lyapunov candidate function,

V =
∑

i∈V−D

‖qp(i) − qi‖ (2)

where p(i) is the parent of node i in T . It is clear that V = 0 if and only if
all robots encounter D. The time derivative of V is,

V̇ =
∑

i∈V−D

(qp(i) − qi)
T

‖qp(i) − qi‖
(q̇p(i) − q̇i). (3)

In Algorithm 1, the parent node does not maneuver until encountering
all its children. i.e., q̇p(i) = 0. Hence, (3) leads to

V̇ = −
∑

i∈V−D

(qp(i) − qi)
T

‖qp(i) − qi‖
q̇i, (4)

V̇ = −
∑

i∈V−D

vip

(
(qp(i) − qi)

‖qp(i) − qi‖

)T (
(qp(i) − qi)

‖qp(i) − qi‖

)
≤ 0. (5)

Using LaSalle invariance principle [47], the system converges to the set
in which V̇ = 0. V̇ = 0 if and only if all robots encounter D.

In our assumption (Sec. 3.2), two robots encounter each other in the
case where ‖qi − qj‖ ≤ ε. Once a robot encounters its parent, it re-assigns
its associate parent to the parent with a higher-order in the tree. This can
generate a jump in V (a discontinuous fall in V). Nevertheless, the amount of
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such jumps is finite and upper bounded by the number of robots. Therefore,
the number of such discontinuities does not influence the system convergence.

This concludes the proof that all robots qi,∀i ∈ V, converge (rendezvous)
at qD.

4.3.2. Connectivity maintenance

In the next proposition, we show that the proposed algorithm preserves
connectivity while performing the rendezvous.

Proposition 1. Using Algorithm 1, a robot is connected to at least one other
robot in the graph G in time of rendezvous.

Proof. To prove this proposition, we first show that the robots do not lose
a connection with their parents and that the robots are within the max-
imum sensing range Rm of at least one other robot in the tree T . Since
the movement of a robot is heading toward its immediate parent, we first
show that every robot i is always detected by its parent p(i) before they
encounter. As per the Algorithm 1, a parent robot p(i) does not move un-
til all its children satisfy the merge condition. Therefore, ‖q̇p‖ = 0 if for
any i ∈ Cp, ‖qp − qi‖ > ε. Here, Cp is the children set of a robot p.
Note that the function ‖qp − qi‖ is always non-increasing as per the algo-
rithm. This way, the movement of the robot toward its parent is restricted
along the line segment where the robot always stays connected. Thus, all
children robots are sensed by their parent (and vice versa) until they en-
counter their parents. After a robot i encounters its parent p(i), both the
robot i and its next successive parent p(p(i)) can sense each other because
‖qp(p(i)) − qp(i)‖ ≤ Rm − ε3; and ‖qp(i) − qi‖ ≤ ε =⇒ ‖qp(p(i)) − qi‖ ≤ Rm.
Hence, every robot will be sensed by at least one other robot in the tree, and
the graph stays connected. This concludes the proof.

4.3.3. Fault-tolerance in the controller

We claim that Algorithm 1 is designed to handle cases of intermittent
communications (disconnection or reconnection of a robot). In such cases,

3Remember that two robots are neighbors if and only if they sense each other while
satisfying the relative distance between them being less than or equal to Rm − ε.
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the shortest-path tree T is regenerated by triggering the Algorithm 2, and
the Algorithm 1 is updated accordingly.

We also say that a robot is faulty if the robot’s movement does not follow
the Algorithm 1. Here, we refer to a faulty robot regarding mobility issues.
We introduce a proposition (Proposition 2) in which we claim that a faulty
robot can be detected by its child.

Proposition 2. Assume that all robots have the same updated graph G using
Algorithm 2, and that they move according to Algorithm 1. A faulty robot
can be detected by its children during the rendezvous process.

Proof. Using Algorithm 1, a parent robot p(i) does not move until encoun-
tering all its children. In the case where a robot i, a child of p(i), detects
that the parent robot p(i) is not stationary (by tracking the relative bearing
or the relative range of the parent robot using local sensors), then robot i
can presume that p(i) is faulty. However, this converse is not true. That is, a
parent robot cannot detect a fault in the child robot if an obstacle avoidance
algorithm (which influences the control velocities) is used. Nevertheless, this
simple rationale can be extended to detect other types of faults in the system
by checking the robots whether they conform to Algorithm 1.

Once a faulty robot is detected, then the shortest-path tree T is regener-
ated by triggering Algorithm 2 without the faulty robot, and Algorithm 1 is
updated accordingly.

Consider the case where there are too many faulty robots. In this case,
we may not be able to generate a connected tree T without the faulty robots.
Thus, this approach works as long as a connected T can be built without the
faulty robots.

5. Field Experiments

In this section, we first present the experimental setup. Next, we discuss
the implementation of the above rendezvous control algorithm integrated
with an obstacle avoidance strategy. Then, we present the experiment design
and the scenarios tested.

5.1. Experiment setup and distance estimation

Figure 4 presents the configuration of the each robot in detail. All the
three robots have the same configuration. The base platform is a commer-
cial Pioneer P3AT mobile robot platform. For communication, we install a
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state-of-the-art, low-cost, and small wireless AP, PicoStation M2-HP, man-
ufactured by Ubiquiti Networks Inc. This AP is equipped with a 5-dBi om-
nidirectional antenna and supports passive Power over Ethernet (PoE), so it
does not require an additional power cord. Also, it runs with IEEE 802.11g
protocol having an operating frequency of 2.4 GHz and produces up to 28
dBm output power. In addition to this PicoStation AP, we installed a small
and light Yagi directional antenna (manufactured by PCTEL), connected to
a Wi-Fi USB adapter. This antenna is used for measuring the RSSI from
different directions (through a rotation tracking system), which is then used
for DOA estimation as detailed in Section 5.2.1. The beamwidth of this
antenna is 60◦ at 1/2 power for horizontal and vertical planes. An Asus
Eee laptop running Linux mounted on the P3AT robot is used to achieve
high-level motion planning. This device have shown strong adaptability for
outdoor point-to-point connections [41, 48].

To enable robot movements, we adopted the leader-follower robotic sys-
tem introduced in [18], which is composed of a bearing estimation using a
rotational directional antenna and an obstacle avoidance algorithm using an
ultrasound sensor array. In the field experiments, the network topology up-
dates at the frequency of 1 Hz to synchronize collected data and update the
shortest path tree T in Algorithm 1 and the distance list L in Algorithm 2.
The selection of this update frequency is determined with careful considera-
tion of the moving velocity of the robots and the time required to detect and
react to a failed node.

5.2. Robot control and obstacle avoidance

In this section, we briefly summarize our method, which we adopted from
[18], to estimate the direction of arrival (relative bearing) from the RSSI of
the rotating directional antenna, and use it to control the robot.

5.2.1. Estimation of relative bearings

The directional antenna is mounted on the robot’s pan servo system and
uses a USB Wi-Fi adapter to measure the RSSI of the parent robot’s AP
continuously. Then, with this measured RSSI, a Weighted Centered Algo-
rithm (WCA) is used to calculate the DOA with the AP of the parent robot.
The pan servo system has a scanning range of 180◦. With a resolution of 10◦,
the robot measures the RSSI and records the corresponding angle.
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Figure 4: The mobile robot platform used in the experiments.

First, a weight is calculated at robot i based on the RSSI measurements
from robot j at any instant k.

wj
k = 10

(
RSSI

j
k

γ1

)
(6)

where γ1 is a positive constant (empirically determined) that can be adjusted
to the nature of the environment. The relative bearing of robot j from robot
i is estimated using:

α̃ij =

∑M
k=1w

j
kθ

i
k∑M

k=1w
j
k

, (7)

where θik is the orientation of the antenna at which RSSIk is measured, and
M is the number of measurements per rotation scan. This DOA is then used
to aid the children robots track and move toward their parent robots.

This method of estimating the relative bearings has shown to be reason-
ably accurate and robust to various environments based on our field exper-
iments in the past [18, 48]. For more details on the bearing estimation and
control, readers are referred to [48].
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5.2.2. Obstacle avoidance

In the case where LOS between a robot and its neighbor is blocked by a
(big) obstacle, the path connecting the two robots is not traversed using our
algorithms. However, there may be a case where there is a small obstacle
between two robots, and the obstacle does not block the LOS between the two
robots. In this case, the two robots become neighbor to each other, and the
path that connects the two robots may be traversed using our algorithms. As
a robot moves along the path, it may collide with the small obstacle. Thus,
we require an additional controller to avoid collision using local sensors.

We assume that unknown obstacles in the working space are convex in
horizontal contour. To avoid such obstacles (static or dynamic) that are
present between a robot moving towards its parent robot, we use the strategy
described below.

The robots are equipped with an array of eight ultrasound sensors on the
front side of the robot, as mentioned in Sec. 5.1, covering an angular range
of 180◦. In one scan that happens at 10 Hz, the sonar sensors provide the
obstacle distance information over the entire angular range with a resolution
of up to 1◦. In every 10◦, we obtain a distance dk and compute a weight wk

defined as

wk = 10

(
−dk
γ2

)
(8)

where γ2 is a positive gain depending on the quality of the sonar signal. The
direction guiding the robot to a safe region can be estimated by means of
weighted centroid approaches as follows:

α̃obs =

∑Ns
k=1wkθk∑Ns
k=1wk

(9)

where Ns is the number of distance measurements per scan, and θk is the
angle at instant k where the distance value dk is measured.

5.2.3. Velocity control

To control the robots on a Cartesian plane, we apply the control law in
(1) with a switching controller that selects the αip as follows:

αip =

{
α̃ij, if the obstacles are in a safe region,

α̃obs, otherwise.
(10)
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Thus, we integrate both bearings of the parent robot and the obstacles
and navigate the robot to a safe region when it should avoid the obstacles
first.

The dynamics are then transferred to the internal kinematics of the
robots, where a PID motion controller is applied to the left and right motors
as it is a differential-drive vehicle.

Also, the velocity of the child robot is set to be proportional to the RSSI
(which is a log-normal function of the distance) from the parent robot. The
linear velocity control factor vip = ω1 − RSSI − ω2RSSI. Here, the RSSI
represents the RSSI value at the relative bearing angle of the parent, ω1 and
ω2 are positive values such that vip is non-negative. This function is chosen
such that when the robot is far from the parent robot, it moves at a higher
speed and vice versa.

5.3. Experiment design

To test our theory and demonstrate its feasibility, we designed a multi-
agent rendezvous experiment involving three mobile robots and a static work-
station as shown in Figure 1. A large and obstacle-filled parking lot (approx
5000 m2) is used as the experiment site. For convenience, we name three
robots as R1, R2, and R3. We name the static workstation as R0, which
is the designated rendezvous point in the experiments. Therefore, all the
robots are supposed to gather at R0 after triggering a rendezvous signal. We
assume that there is no communication between R0 and R2, and R1 and R3

due to their communication range limits and the non-direct sight of view.
In our experiments, we set equal edge weights to all edges in the tree,

which is not an ideal implementation. However, due to the low density of
the network graph (number of edges = 3) in the field experiments, the weights
do not play a key role in algorithm performance4. When we assume equal
weights for all edges, T becomes the shortest-hop tree generated by breadth-
first search (BFS) algorithm. Thus, each robot moves along the determined
shortest-hop path to reach the root node. In this case, the traversal distance
of a robot may be long since the shortest-hop path does not assure the
shortest distance path. Therefore it is desirable to use the range information
(as the weighs in G) obtained from a reliable range sensor, if available.

4Note, in Section 7, we simulate the case where every robot is equipped with both range
and bearing sensors. The simulation experiments evaluate the algorithm for scalability and
make use of the range sensors to determine the weights of the edges.
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Figure 5: Initial hierarchical connected tree for all the three scenarios (left figure). Here,
the diameter (depth) of the tree is D(T ) = 2. The updated hierarchical connected tree in
Scenario 3 is shown on right figure.

The Algorithm 2 resulted in the same graph G at all the robots, which is
then used in the main algorithm (Algorithm 1). Through our experiments,
we verified that the proposed rendezvous algorithm works without any range
sensors. The maximum sensing (communication) range Rm is set to 40 m
(by applying a minimum RSSI threshold RSSImin = −80 dBm at which the
robot can reliably communicate with another robot), and the maximum ve-
locity is set to be 0.2 m/s. The maximum RSSI threshold that is used to
decide if the robots encounter each other is set to -22 dBm, which approxi-
mately corresponds to a threshold distance of ε = 2 m.

5.4. Experiment scenarios

We experimented with three different scenarios. In all the scenarios, the
initial communication hierarchy is the same as in Figure 5 (left).

5.4.1. Scenario 1

In this scenario, a typical rendezvous behavior is considered. The node
R0 is the rendezvous point, with children R1 and R3. The node R2 has R1

as its parent. Thus, on initiating the rendezvous task, the node R3 starts
moving toward R0, while R2 moves toward R1. After R2 reaches R1, both
R1 and R2 move toward R0, finishing the rendezvous objective.

5.4.2. Scenario 2

This scenario is similar to the previous one, while a node movement fault
during the rendezvous task is simulated. This scenario is designed to demon-
strate the strategy discussed in Sec. 4.3.3. That is, R1 node fails to move
properly, but still able to communicate with other nodes. Therefore, as soon
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as the node R2 reaches R1, R2 switches to R0 as its parent and moves toward
R0. On the other hand, R3 starts moving toward R0 from the beginning
as R0 is its direct parent. Thus, at the end of rendezvous, only R3 and R2

arrive at R0, while R1 is broken and does some random movements around
its original position due to its mobility fault.

5.4.3. Scenario 3

This is similar to Scenario 2, while there is a complete node fault with R1

(both mobility and communication faults). We simulate the node fault by
suddenly powering off R1 while R2 is moving toward R1. Recall that at the
beginning, R3 moves toward R0 and R2 moves toward R1, and R1 waits until
R2 reaches it. Thus, when R1 is switched off, R2 is unable to communicate
and track R1 in its vicinity, resulting that the network hierarchy gets updated
with R1 removed as can be seen in Figure 5 (right). As soon as this update
is made, R2 will switch its parent to R3, and R3 will stop moving toward R0,
because it has to wait for its new child R2. After R2 reaches R3, both move
towards R0 and complete the rendezvous task.

6. Results and discussion

We performed two trials in each scenario, and have reported one trail
in each case as they both were very similar in results. The paths taken
by the robots (captured by a GPS sensor, because the robot odometer was
inaccurate) overlaid on the satellite image are depicted in Figure 6 for all
the scenarios. A temporal sequence of the experiments in all the scenarios is
also shown in Figure 6. Video recordings of the experiments are available at
https://youtu.be/fJEsAPsx_Mw. It can be seen that the resulting behavior
in each scenario was as expected. Note that the robots took the least distant
path possible while avoiding the trees and obstacles on their way. Several
cars are seen on the satellite images; however, actually, they did not exist
during the experiment. Also, note that the GPS reading has a mean accuracy
of 2.5 m [49] typically, and hence the trajectory overlaps with positions of
trees in some places, although the robots successfully avoided them.

6.1. Scenario 1

Figure 6(a) shows several images of the experiment in Scenario 1 as a
sequence. It shows that R3 moved toward R0 and R2 moved toward R1 in
the images A and B. The images B, C, and D show that after R2 met R1
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Figure 6: (a), (c), and (e) show a sequence of stills from experiments in Scenarios 1, 2, and
3. The temporal sequence is sorted alphabetically. (b), (d), and (e) are trajectories of the
robots in Scenarios 1, 2, and 3 overlaid on the satellite image of the actual experimental
site (a large and obstacle-filled parking lot). The trajectory of R1 is depicted in red, the
trajectory of R2 is depicted in green, and the trajectory of R3 is depicted in blue.
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within the threshold distance ε, both R2 and R1 moved and arrived at R0.
Figure 6(b) shows the trajectory taken by the robots in this scenario, where
you can also see all the three robots could successfully rendezvous at the
designated point.

Figure 7(a) represents the changes in RSSI readings (filtered) measured
by the rotational directional antenna of the robots (the best RSSI in a 180
degree scan). R1 and R3 have R0 as its parent (AP), while R2 has R1 as
its parent (AP). As shown in this figure, the RSSI at R3 increases as it
moves toward R0. Similarly, the RSSI at R2 increases as it moves toward
R1. However, after R2 reaches R1, R2 maintains its parent as R1 while R1

moves to R0. Thus, R2 also follows R1, while the RSSI at R2 balances with
the movement of R1, but the RSSI at R1 increases.

In Figure 7(b), the corresponding changes in robots’ velocity (filtered)
are presented. The robot’s maximum velocity is set as 0.2 m/s as mentioned
above. See around 150 seconds that shows the node R1 waited until R2

reached it, and then both moved toward R0., whereas R3 moved toward R0

from the beginning and reached early as expected. Note the velocity was
proportional to the relative distance between the parent and the child as
described in Sec. 5.1. Therefore, when the child was farther from the parent
initially, the velocity was higher, whereas it reduced the velocity when they
were closer.

6.2. Scenario 2

Figure 6(d) shows the trajectory taken by the robots in Scenario 2. Fig-
ure 7(c) shows the velocity plots for this task. Note that R1 stopped recording
the velocity information after around 80 seconds due to technical reasons. As
shown in the Figures 6(c) and 6(d), R2 and R3 were able to rendezvous at R0

while R1 exhibited chaotic movement and circles around its original position.
Notably from Figure 7(c), one can see that the speed of R2 was decreasing
as it was approaching R1 from t = 0 second to t = 40 second. However, as
soon as the parent of R2 node was switched from R1 to R0 after the detection
of the failure of R1, the velocity of R2 was increasing. This result demon-
strates that the proposed rendezvous control strategy can handle fault cases
in nodes.

6.3. Scenario 3

Figure 6(e) shows a sequence of the experiment and Figure 6(f) shows
robots’ trajectories in Scenario 3 where the node R1 was powered off at a
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Figure 7: (a) shows the RSSI changes during rendezvous task in Scenario 1. (b)-(d) show
the change in robot velocity during each of the scenarios.

random instant before R2 reaches R1. The robot trajectories were observed
as expected in Sec. 5.4.3, which was also evident in Figure 7(d) showing the
velocities in one of the trials. Observe that as soon as R1 was out of the
network hierarchy, node R2 switched its parent to R3 and moved toward R3,
and R3 stopped moving until R2 reached R3. After that, both R3 and R2

moved to R0.
The results of this Scenario 3 demonstrate the advantage of a dynamic

hierarchical tree in handling the situation in which one of the nodes has failed
including its ability to communicate.
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6.4. Discussion

The field experiments have validated the following features of the pro-
posed rendezvous control: boundedness, global connectivity, and broken
nodes handling. Also, it shows that all robots exhibit strong capability in
avoiding obstacles in the cluttered and dynamic environment. Nonetheless,
an important feature to be demonstrated is the scalability of the control
scheme as we are dealing with a multi-robot application. As we had only
limited hardware resources for the field test, we conducted simulation exper-
iments for Scenario 1 with the larger number of robot nodes, discussed in
the next section. It is worth noting that robot coordinates are not needed in
the implementation, which reflects the flexibility of the proposed rendezvous
algorithm.

7. Simulation Experiments

We conducted simulation experiments in MATLAB to evaluate the pro-
posed rendezvous control method at a higher scale (regarding the number
of robots). We simulated a 2D environment (plane of 50 m × 50 m) setup
with pre-defined obstacles.In the MATLAB simulation, we introduced a con-
straint on the sensing capability; thus one robot can detect another robot
only if a LOS path exists between them (i.e., obstacle-free movements). We
assumed that both range and bearing sensors are available, and thus we were
able to obtain the relative position of the neighboring robots. Each robot
moves along the shortest path to the root, since the constructed tree is the
shortest-path tree (compared to a shortest-hop tree in the field experiments).

In the simulations, the sampling interval of a robot’s velocity controller
(1) is set as 0.1 seconds. This implies that the velocity of a robot changes
at a rate of 10 Hz. Note, we consider a fixed network graph and update the
network tree at the same rate of the velocity controller. The maximum
velocity of each robot is Sm = 0.5 m/s. We set the sensing range Rm = 5 m
and distance threshold ε = 0.1 m. Other settings are similar to the ones in
the field experiments.

We conducted simulation experiments with 60 robots with two trials with
different rendezvous point. Figure 8 shows the results of the simulations
validating the scalability of the proposed method. Figures 8(a) and 8(b)
show the nodes position and the resulting connected tree (both G0 and T )
respectively. The outcomes of the robots trajectories in each trial are shown
in the Figures 8(c) and 8(d). Note that each robot moves along T . The only
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Figure 8: Simulation with 60 robots is shown. (a) Initial positions of all robots. Green
circles are robot nodes and red curves are obstructions for communication/sensing. (b)
Connected graph and network hierarchy. All edges are depicted as black dotted-line seg-
ments. All shortest-path connections are depicted as blue line segments. (c) and (d)
Trajectories of all robots after rendezvous at the designated position (marked as blue
asterisk) in different trials.

difference is the rendezvous point in both cases. The denser (darker green)
the circles are in the plots, the higher the number of robots visited those
positions. A time lapsed demonstration of the simulation results is shown in
the video mentioned in Sec. 6.
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8. Conclusion

We proposed rendezvous control laws for the coordinate-less multi-agent
rendezvous problem based on network topology. Our framework included
building and dynamically updating a hierarchical network tree. The main
characteristics of the proposed control are as follows: boundedness, scala-
bility, and global connectedness preservation. Our control laws can handle
realistic application scenarios in cluttered environments and are easy to im-
plement in practice. Additionally, the proposed method can handle minor
fault cases such as mobility and communication faults without disrupting the
whole rendezvous task.

We conducted extensive field experiments and simulations to validate the
proposed control laws under practical application-oriented rendezvous sce-
narios. In field experiments, we used three mobile robots and demonstrated
that the robots could rendezvous at the desired point in different scenar-
ios even if there were mobility and communication faults in one node. In
simulations, we further demonstrated the scalability of the proposed control
scheme.

In future work, we will investigate the rendezvous problem using multiple
squads with the primary goal of enabling both dynamic parent and child
nodes (e.g., without the need to wait until all their children arrive) and mov-
ing rendezvous points, in addition to improving efficiency regarding energy
and communication. Also, a possible extension is to fuse multiple sensor
information for movement control. For instance, using vision integrated with
wireless measurements and range information to track the trajectory of a
dynamic parent robot with a goal of reducing the communication workload
and early detection of failure scenarios.
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